Symbiont location, host fitness, and possible coadaptation in a symbiosis between social amoebae and bacteria

  1. Longfei Shu
  2. Debra A Brock
  3. Katherine S Geist
  4. Jacob W Miller
  5. David C Queller
  6. Joan E Strassmann  Is a corresponding author
  7. Susanne DiSalvo  Is a corresponding author
  1. Washington University in St Louis, United States
  2. Southern Illinois University Edwardsville, United States

Abstract

Recent symbioses, particularly facultative ones, are well suited for unravelling the evolutionary give and take between partners. Here we look at variation in natural isolates of the social amoeba Dictyostelium discoideum and their relationships with bacterial symbionts, Burkholderia hayleyella and Burkholderia agricolaris. Only about a third of field-collected amoebae carry a symbiont. We cured and cross-infected amoebae hosts with different symbiont association histories and then compared host responses to each symbiont type. Before curing, field-collected clones did not vary significantly in overall fitness, but infected hosts produced morphologically different multicellular structures. After curing and reinfecting, host fitness declined. However, natural B. hayleyella hosts suffered fewer fitness costs when reinfected with B. hayleyella, indicating that they have evolved mechanisms to tolerate their symbiont. Our work suggests that amoebae hosts have evolved mechanisms to tolerate specific acquired symbionts; exploring host-symbiont relationships that vary within species may provide further insights into disease dynamics.

Data availability

All raw data has been archived in the Washington University Library: https://doi.org/10.7936/wgnk-2c37

The following data sets were generated

Article and author information

Author details

  1. Longfei Shu

    Department of Biology, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Debra A Brock

    Department of Biology, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Katherine S Geist

    Department of Biology, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jacob W Miller

    Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David C Queller

    Department of Biology, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Joan E Strassmann

    Department of Biology, Washington University in St Louis, St Louis, United States
    For correspondence
    strassmann@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
  7. Susanne DiSalvo

    Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, United States
    For correspondence
    sdisalv@siue.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4001-4672

Funding

National Science Foundation (DEB1146375)

  • David C Queller
  • Joan E Strassmann

The Life Sciences Research Foundation

  • Longfei Shu

John Templeton Foundation (43667)

  • David C Queller
  • Joan E Strassmann

National Science Foundation (IOS1256416)

  • David C Queller

National Science Foundation (IOS1656756)

  • David C Queller

Simons Foundation

  • Longfei Shu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tony Ruzzini, University of Saskatchewan, Canada

Version history

  1. Received: October 8, 2018
  2. Accepted: December 30, 2018
  3. Accepted Manuscript published: December 31, 2018 (version 1)
  4. Version of Record published: January 17, 2019 (version 2)

Copyright

© 2018, Shu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,168
    Page views
  • 324
    Downloads
  • 37
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Longfei Shu
  2. Debra A Brock
  3. Katherine S Geist
  4. Jacob W Miller
  5. David C Queller
  6. Joan E Strassmann
  7. Susanne DiSalvo
(2018)
Symbiont location, host fitness, and possible coadaptation in a symbiosis between social amoebae and bacteria
eLife 7:e42660.
https://doi.org/10.7554/eLife.42660

Share this article

https://doi.org/10.7554/eLife.42660

Further reading

    1. Evolutionary Biology
    Zhiliang Zhang, Zhifei Zhang ... Guoxiang Li
    Research Article

    Biologically-controlled mineralization producing organic-inorganic composites (hard skeletons) by metazoan biomineralizers has been an evolutionary innovation since the earliest Cambrian. Among them, linguliform brachiopods are one of the key invertebrates that secrete calcium phosphate minerals to build their shells. One of the most distinct shell structures is the organo-phosphatic cylindrical column exclusive to phosphatic-shelled brachiopods, including both crown and stem groups. However, the complexity, diversity, and biomineralization processes of these microscopic columns are far from clear in brachiopod ancestors. Here, exquisitely well-preserved columnar shell ultrastructures are reported for the first time in the earliest eoobolids Latusobolus xiaoyangbaensis gen. et sp. nov. and Eoobolus acutulus sp. nov. from the Cambrian Series 2 Shuijingtuo Formation of South China. The hierarchical shell architectures, epithelial cell moulds, and the shape and size of cylindrical columns are scrutinised in these new species. Their calcium phosphate-based biomineralized shells are mainly composed of stacked sandwich columnar units. The secretion and construction of the stacked sandwich model of columnar architecture, which played a significant role in the evolution of linguliforms, is highly biologically controlled and organic-matrix mediated. Furthermore, a continuous transformation of anatomic features resulting from the growth of diverse columnar shells is revealed between Eoobolidae, Lingulellotretidae, and Acrotretida, shedding new light on the evolutionary growth and adaptive innovation of biomineralized columnar architecture among early phosphatic-shelled brachiopods during the Cambrian explosion.

    1. Developmental Biology
    2. Evolutionary Biology
    Eman Hijaze, Tsvia Gildor ... Smadar Ben-Tabou de-Leon
    Research Article

    Biomineralization had apparently evolved independently in different phyla, using distinct minerals, organic scaffolds, and gene regulatory networks (GRNs). However, diverse eukaryotes from unicellular organisms, through echinoderms to vertebrates, use the actomyosin network during biomineralization. Specifically, the actomyosin remodeling protein, Rho-associated coiled-coil kinase (ROCK) regulates cell differentiation and gene expression in vertebrates’ biomineralizing cells, yet, little is known on ROCK’s role in invertebrates’ biomineralization. Here, we reveal that ROCK controls the formation, growth, and morphology of the calcite spicules in the sea urchin larva. ROCK expression is elevated in the sea urchin skeletogenic cells downstream of the Vascular Endothelial Growth Factor (VEGF) signaling. ROCK inhibition leads to skeletal loss and disrupts skeletogenic gene expression. ROCK inhibition after spicule formation reduces the spicule elongation rate and induces ectopic spicule branching. Similar skeletogenic phenotypes are observed when ROCK is inhibited in a skeletogenic cell culture, indicating that these phenotypes are due to ROCK activity specifically in the skeletogenic cells. Reduced skeletal growth and enhanced branching are also observed under direct perturbations of the actomyosin network. We propose that ROCK and the actomyosin machinery were employed independently, downstream of distinct GRNs, to regulate biomineral growth and morphology in Eukaryotes.