Symbiont location, host fitness, and possible coadaptation in a symbiosis between social amoebae and bacteria

  1. Longfei Shu
  2. Debra A Brock
  3. Katherine S Geist
  4. Jacob W Miller
  5. David C Queller
  6. Joan E Strassmann  Is a corresponding author
  7. Susanne DiSalvo  Is a corresponding author
  1. Washington University in St Louis, United States
  2. Southern Illinois University Edwardsville, United States

Abstract

Recent symbioses, particularly facultative ones, are well suited for unravelling the evolutionary give and take between partners. Here we look at variation in natural isolates of the social amoeba Dictyostelium discoideum and their relationships with bacterial symbionts, Burkholderia hayleyella and Burkholderia agricolaris. Only about a third of field-collected amoebae carry a symbiont. We cured and cross-infected amoebae hosts with different symbiont association histories and then compared host responses to each symbiont type. Before curing, field-collected clones did not vary significantly in overall fitness, but infected hosts produced morphologically different multicellular structures. After curing and reinfecting, host fitness declined. However, natural B. hayleyella hosts suffered fewer fitness costs when reinfected with B. hayleyella, indicating that they have evolved mechanisms to tolerate their symbiont. Our work suggests that amoebae hosts have evolved mechanisms to tolerate specific acquired symbionts; exploring host-symbiont relationships that vary within species may provide further insights into disease dynamics.

Data availability

All raw data has been archived in the Washington University Library: https://doi.org/10.7936/wgnk-2c37

The following data sets were generated

Article and author information

Author details

  1. Longfei Shu

    Department of Biology, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Debra A Brock

    Department of Biology, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Katherine S Geist

    Department of Biology, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jacob W Miller

    Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David C Queller

    Department of Biology, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Joan E Strassmann

    Department of Biology, Washington University in St Louis, St Louis, United States
    For correspondence
    strassmann@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
  7. Susanne DiSalvo

    Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, United States
    For correspondence
    sdisalv@siue.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4001-4672

Funding

National Science Foundation (DEB1146375)

  • David C Queller
  • Joan E Strassmann

The Life Sciences Research Foundation

  • Longfei Shu

John Templeton Foundation (43667)

  • David C Queller
  • Joan E Strassmann

National Science Foundation (IOS1256416)

  • David C Queller

National Science Foundation (IOS1656756)

  • David C Queller

Simons Foundation

  • Longfei Shu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tony Ruzzini, University of Saskatchewan, Canada

Version history

  1. Received: October 8, 2018
  2. Accepted: December 30, 2018
  3. Accepted Manuscript published: December 31, 2018 (version 1)
  4. Version of Record published: January 17, 2019 (version 2)

Copyright

© 2018, Shu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,108
    Page views
  • 315
    Downloads
  • 35
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Longfei Shu
  2. Debra A Brock
  3. Katherine S Geist
  4. Jacob W Miller
  5. David C Queller
  6. Joan E Strassmann
  7. Susanne DiSalvo
(2018)
Symbiont location, host fitness, and possible coadaptation in a symbiosis between social amoebae and bacteria
eLife 7:e42660.
https://doi.org/10.7554/eLife.42660

Further reading

    1. Ecology
    2. Evolutionary Biology
    Hannah J Williams, Vivek H Sridhar ... Amanda D Melin
    Review Article

    Groups of animals inhabit vastly different sensory worlds, or umwelten, which shape fundamental aspects of their behaviour. Yet the sensory ecology of species is rarely incorporated into the emerging field of collective behaviour, which studies the movements, population-level behaviours, and emergent properties of animal groups. Here, we review the contributions of sensory ecology and collective behaviour to understanding how animals move and interact within the context of their social and physical environments. Our goal is to advance and bridge these two areas of inquiry and highlight the potential for their creative integration. To achieve this goal, we organise our review around the following themes: (1) identifying the promise of integrating collective behaviour and sensory ecology; (2) defining and exploring the concept of a ‘sensory collective’; (3) considering the potential for sensory collectives to shape the evolution of sensory systems; (4) exploring examples from diverse taxa to illustrate neural circuits involved in sensing and collective behaviour; and (5) suggesting the need for creative conceptual and methodological advances to quantify ‘sensescapes’. In the final section, (6) applications to biological conservation, we argue that these topics are timely, given the ongoing anthropogenic changes to sensory stimuli (e.g. via light, sound, and chemical pollution) which are anticipated to impact animal collectives and group-level behaviour and, in turn, ecosystem composition and function. Our synthesis seeks to provide a forward-looking perspective on how sensory ecologists and collective behaviourists can both learn from and inspire one another to advance our understanding of animal behaviour, ecology, adaptation, and evolution.

    1. Evolutionary Biology
    John S Favate, Kyle S Skalenko ... Premal Shah
    Research Article

    Changes in an organism’s environment, genome, or gene expression patterns can lead to changes in its metabolism. The metabolic phenotype can be under selection and contributes to adaptation. However, the networked and convoluted nature of an organism’s metabolism makes relating mutations, metabolic changes, and effects on fitness challenging. To overcome this challenge, we use the long-term evolution experiment (LTEE) with E. coli as a model to understand how mutations can eventually affect metabolism and perhaps fitness. We used mass spectrometry to broadly survey the metabolomes of the ancestral strains and all 12 evolved lines. We combined this metabolic data with mutation and expression data to suggest how mutations that alter specific reaction pathways, such as the biosynthesis of nicotinamide adenine dinucleotide, might increase fitness in the system. Our work provides a better understanding of how mutations might affect fitness through the metabolic changes in the LTEE and thus provides a major step in developing a complete genotype–phenotype map for this experimental system.