Brain-wide cellular resolution imaging of Cre transgenic zebrafish lines for functional circuit-mapping

  1. Kathryn M Tabor
  2. Gregory D Marquart
  3. Christopher Hurt
  4. Trevor S Smith
  5. Alexandra K Geoca
  6. Ashwin A Bhandiwad
  7. Abhignya Subedi
  8. Jennifer L Sinclair
  9. Hannah M Rose
  10. Nicholas F Polys
  11. Harold A Burgess  Is a corresponding author
  1. National Institute of Child Health and Human Development, United States
  2. Virginia Polytechnic Institute and State University, United States

Abstract

Decoding the functional connectivity of the nervous system is facilitated by transgenic methods that express a genetically encoded reporter or effector in specific neurons; however, most transgenic lines show broad spatiotemporal and cell-type expression. Increased specificity can be achieved using intersectional genetic methods which restrict reporter expression to cells that co-express multiple drivers, such as Gal4 and Cre. To facilitate intersectional targeting in zebrafish, we have generated more than 50 new Cre lines, and co-registered brain expression images with the Zebrafish Brain Browser, a cellular resolution atlas of 264 transgenic lines. Lines labeling neurons of interest can be identified using a web-browser to perform a 3D spatial search (zbbrowser.com). This resource facilitates the design of intersectional genetic experiments and will advance a wide range of precision circuit-mapping studies.

Data availability

Registered individual confocal brain scans have been deposited in Dryad https://doi.org/10.5061/dryad.tk467n8

The following data sets were generated

Article and author information

Author details

  1. Kathryn M Tabor

    Division of Developmental Biology, National Institute of Child Health and Human Development, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Gregory D Marquart

    Division of Developmental Biology, National Institute of Child Health and Human Development, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9811-5372
  3. Christopher Hurt

    Division of Developmental Biology, National Institute of Child Health and Human Development, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Trevor S Smith

    Division of Developmental Biology, National Institute of Child Health and Human Development, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Alexandra K Geoca

    Division of Developmental Biology, National Institute of Child Health and Human Development, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ashwin A Bhandiwad

    Division of Developmental Biology, National Institute of Child Health and Human Development, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Abhignya Subedi

    Division of Developmental Biology, National Institute of Child Health and Human Development, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jennifer L Sinclair

    Division of Developmental Biology, National Institute of Child Health and Human Development, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Hannah M Rose

    Division of Developmental Biology, National Institute of Child Health and Human Development, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Nicholas F Polys

    Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Harold A Burgess

    Division of Developmental Biology, National Institute of Child Health and Human Development, Bethesda, United States
    For correspondence
    burgessha@mail.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1966-7801

Funding

Eunice Kennedy Shriver National Institute of Child Health and Human Development (1ZIAHD008884-04)

  • Harold A Burgess

Virginia Tech Advanced Research Computing (NA)

  • Nicholas F Polys

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#15-039) of the Eunice Kennedy Shriver National Institute of Child Health and Human Development.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 4,999
    views
  • 630
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kathryn M Tabor
  2. Gregory D Marquart
  3. Christopher Hurt
  4. Trevor S Smith
  5. Alexandra K Geoca
  6. Ashwin A Bhandiwad
  7. Abhignya Subedi
  8. Jennifer L Sinclair
  9. Hannah M Rose
  10. Nicholas F Polys
  11. Harold A Burgess
(2019)
Brain-wide cellular resolution imaging of Cre transgenic zebrafish lines for functional circuit-mapping
eLife 8:e42687.
https://doi.org/10.7554/eLife.42687

Share this article

https://doi.org/10.7554/eLife.42687

Further reading

    1. Neuroscience
    Claire Meissner-Bernard, Friedemann Zenke, Rainer W Friedrich
    Research Article

    Biological memory networks are thought to store information by experience-dependent changes in the synaptic connectivity between assemblies of neurons. Recent models suggest that these assemblies contain both excitatory and inhibitory neurons (E/I assemblies), resulting in co-tuning and precise balance of excitation and inhibition. To understand computational consequences of E/I assemblies under biologically realistic constraints we built a spiking network model based on experimental data from telencephalic area Dp of adult zebrafish, a precisely balanced recurrent network homologous to piriform cortex. We found that E/I assemblies stabilized firing rate distributions compared to networks with excitatory assemblies and global inhibition. Unlike classical memory models, networks with E/I assemblies did not show discrete attractor dynamics. Rather, responses to learned inputs were locally constrained onto manifolds that ‘focused’ activity into neuronal subspaces. The covariance structure of these manifolds supported pattern classification when information was retrieved from selected neuronal subsets. Networks with E/I assemblies therefore transformed the geometry of neuronal coding space, resulting in continuous representations that reflected both relatedness of inputs and an individual’s experience. Such continuous representations enable fast pattern classification, can support continual learning, and may provide a basis for higher-order learning and cognitive computations.

    1. Neuroscience
    Raven Star Wallace, Bronte Mckeown ... Jonathan Smallwood
    Research Article

    Movie-watching is a central aspect of our lives and an important paradigm for understanding the brain mechanisms behind cognition as it occurs in daily life. Contemporary views of ongoing thought argue that the ability to make sense of events in the ‘here and now’ depend on the neural processing of incoming sensory information by auditory and visual cortex, which are kept in check by systems in association cortex. However, we currently lack an understanding of how patterns of ongoing thoughts map onto the different brain systems when we watch a film, partly because methods of sampling experience disrupt the dynamics of brain activity and the experience of movie-watching. Our study established a novel method for mapping thought patterns onto the brain activity that occurs at different moments of a film, which does not disrupt the time course of brain activity or the movie-watching experience. We found moments when experience sampling highlighted engagement with multi-sensory features of the film or highlighted thoughts with episodic features, regions of sensory cortex were more active and subsequent memory for events in the movie was better—on the other hand, periods of intrusive distraction emerged when activity in regions of association cortex within the frontoparietal system was reduced. These results highlight the critical role sensory systems play in the multi-modal experience of movie-watching and provide evidence for the role of association cortex in reducing distraction when we watch films.