Visualization of currents in neural models with similar behavior and different conductance densities

  1. Leandro M Alonso  Is a corresponding author
  2. Eve Marder
  1. Brandeis University, United States


Conductance-based models of neural activity produce large amounts of data that can be hard to visualize and interpret. We introduce visualization methods to display the dynamics of the ionic currents and to display the models' response to perturbations. To visualize the currents' dynamics we compute the percent contribution of each current and display them over time using stacked-area plots. The waveform of the membrane potential and the contribution of each current change as the models are perturbed. To represent these changes over a range of the perturbation control parameter, we compute and display the distributions of these waveforms. We illustrate these procedures in six examples of bursting model neurons with similar activity but that differ as much as 3-fold in their conductance densities. These visualization methods provide heuristic insight into why individual neurons or networks with similar behavior can respond widely differently to perturbations.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2 through 15.Data package available in Dryad: doi:10.5061/dryad.d0779mb

The following data sets were generated

Article and author information

Author details

  1. Leandro M Alonso

    Volen Center, Brandeis University, Waltham, United States
    For correspondence
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8211-2855
  2. Eve Marder

    Volen Center, Brandeis University, Waltham, United States
    Competing interests
    Eve Marder, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9632-5448


National Institutes of Health (R35 NS097343)

  • Eve Marder

Swartz Foundation (2017)

  • Leandro M Alonso

National Institutes of Health (MH046742)

  • Eve Marder

National Institutes of Health (T32 NS07292)

  • Leandro M Alonso

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Frances K Skinner, Krembil Research Institute, University Health Network, Canada

Publication history

  1. Received: October 9, 2018
  2. Accepted: January 29, 2019
  3. Accepted Manuscript published: January 31, 2019 (version 1)
  4. Version of Record published: February 28, 2019 (version 2)


© 2019, Alonso & Marder

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 2,774
    Page views
  • 444
  • 29

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Leandro M Alonso
  2. Eve Marder
Visualization of currents in neural models with similar behavior and different conductance densities
eLife 8:e42722.

Further reading

    1. Neuroscience
    Kevin J Miller et al.
    Research Article

    Humans and animals make predictions about the rewards they expect to receive in different situations. In formal models of behavior, these predictions are known as value representations, and they play two very different roles. Firstly, they drive choice: the expected values of available options are compared to one another, and the best option is selected. Secondly, they support learning: expected values are compared to rewards actually received, and future expectations are updated accordingly. Whether these different functions are mediated by different neural representations remains an open question. Here we employ a recently-developed multi-step task for rats that computationally separates learning from choosing. We investigate the role of value representations in the rodent orbitofrontal cortex, a key structure for value-based cognition. Electrophysiological recordings and optogenetic perturbations indicate that these representations do not directly drive choice. Instead, they signal expected reward information to a learning process elsewhere in the brain that updates choice mechanisms.

    1. Neuroscience
    Bin Wan et al.
    Research Article Updated

    The human cerebral cortex is symmetrically organized along large-scale axes but also presents inter-hemispheric differences in structure and function. The quantified contralateral homologous difference, that is asymmetry, is a key feature of the human brain left-right axis supporting functional processes, such as language. Here, we assessed whether the asymmetry of cortical functional organization is heritable and phylogenetically conserved between humans and macaques. Our findings indicate asymmetric organization along an axis describing a functional trajectory from perceptual/action to abstract cognition. Whereas language network showed leftward asymmetric organization, frontoparietal network showed rightward asymmetric organization in humans. These asymmetries were heritable in humans and showed a similar spatial distribution with macaques, in the case of intra-hemispheric asymmetry of functional hierarchy. This suggests (phylo)genetic conservation. However, both language and frontoparietal networks showed a qualitatively larger asymmetry in humans relative to macaques. Overall, our findings suggest a genetic basis for asymmetry in intrinsic functional organization, linked to higher order cognitive functions uniquely developed in humans.