Visualization of currents in neural models with similar behavior and different conductance densities
Abstract
Conductance-based models of neural activity produce large amounts of data that can be hard to visualize and interpret. We introduce visualization methods to display the dynamics of the ionic currents and to display the models' response to perturbations. To visualize the currents' dynamics we compute the percent contribution of each current and display them over time using stacked-area plots. The waveform of the membrane potential and the contribution of each current change as the models are perturbed. To represent these changes over a range of the perturbation control parameter, we compute and display the distributions of these waveforms. We illustrate these procedures in six examples of bursting model neurons with similar activity but that differ as much as 3-fold in their conductance densities. These visualization methods provide heuristic insight into why individual neurons or networks with similar behavior can respond widely differently to perturbations.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2 through 15.Data package available in Dryad: doi:10.5061/dryad.d0779mb
-
Data from: Visualization of currents in neural models with similar behavior and different conductance densitiesDryad Digital Repository, doi:10.5061/dryad.d0779mb.
Article and author information
Author details
Funding
National Institutes of Health (R35 NS097343)
- Eve Marder
Swartz Foundation (2017)
- Leandro M Alonso
National Institutes of Health (MH046742)
- Eve Marder
National Institutes of Health (T32 NS07292)
- Leandro M Alonso
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2019, Alonso & Marder
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,459
- views
-
- 524
- downloads
-
- 97
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
The basic excitatory neurons of the cerebral cortex, the pyramidal cells, are the most important signal integrators for the local circuit. They have quite characteristic morphological and electrophysiological properties that are known to be largely constant with age in the young and adult cortex. However, the brain undergoes several dynamic changes throughout life, such as in the phases of early development and cognitive decline in the aging brain. We set out to search for intrinsic cellular changes in supragranular pyramidal cells across a broad age range: from birth to 85 y of age and we found differences in several biophysical properties between defined age groups. During the first year of life, subthreshold and suprathreshold electrophysiological properties changed in a way that shows that pyramidal cells become less excitable with maturation, but also become temporarily more precise. According to our findings, the morphological features of the three-dimensional reconstructions from different life stages showed consistent morphological properties and systematic dendritic spine analysis of an infantile and an old pyramidal cell showed clear significant differences in the distribution of spine shapes. Overall, the changes that occur during development and aging may have lasting effects on the properties of pyramidal cells in the cerebral cortex. Understanding these changes is important to unravel the complex mechanisms underlying brain development, cognition, and age-related neurodegenerative diseases.
-
- Neuroscience
Reward-rate maximization is a prominent normative principle in behavioral ecology, neuroscience, economics, and AI. Here, we identify, compare, and analyze equations to maximize reward rate when assessing whether to initiate a pursuit. In deriving expressions for the value of a pursuit, we show that time’s cost consists of both apportionment and opportunity cost. Reformulating value as a discounting function, we show precisely how a reward-rate-optimal agent’s discounting function (1) combines hyperbolic and linear components reflecting apportionment and opportunity costs, and (2) is dependent not only on the considered pursuit’s properties but also on time spent and rewards obtained outside the pursuit. This analysis reveals how purported signs of suboptimal behavior (hyperbolic discounting, and the Delay, Magnitude, and Sign effects) are in fact consistent with reward-rate maximization. To better account for observed decision-making errors in humans and animals, we then analyze the impact of misestimating reward-rate-maximizing parameters and find that suboptimal decisions likely stem from errors in assessing time’s apportionment—specifically, underweighting time spent outside versus inside a pursuit—which we term the ‘Malapportionment Hypothesis’. This understanding of the true pattern of temporal decision-making errors is essential to deducing the learning algorithms and representational architectures actually used by humans and animals.