Programmed conversion of hypertrophic chondrocytes into osteoblasts and marrow adipocytes within zebrafish bones

  1. Dion Giovannone
  2. Sandeep Paul
  3. Simone Schindler
  4. Claire Arata
  5. D'Juan T Farmer
  6. Punam Patel
  7. Joanna Smeeton
  8. J Gage Crump  Is a corresponding author
  1. Keck School of Medicine of University of Southern California, United States

Abstract

Much of the vertebrate skeleton develops from cartilage templates that are progressively remodeled into bone. Lineage tracing studies in mouse suggest that chondrocytes within these templates persist and become osteoblasts, yet the underlying mechanisms of this process and whether chondrocytes can generate other derivatives remain unclear. We find that zebrafish cartilages undergo extensive remodeling and vascularization during juvenile stages to generate fat-filled bones. Growth plate chondrocytes marked by sox10 and col2a1a contribute to osteoblasts, marrow adipocytes, and mesenchymal cells within adult bones. At the edge of the hypertrophic zone, chondrocytes re-enter the cell cycle and express leptin receptor (lepr), suggesting conversion into progenitors. Further, mutation of matrix metalloproteinase 9 (mmp9) results in delayed growth plate remodeling and fewer marrow adipocytes. Our data support Mmp9-dependent growth plate remodeling and conversion of chondrocytes into osteoblasts and marrow adipocytes as conserved features of bony vertebrates.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Dion Giovannone

    Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sandeep Paul

    Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2721-1874
  3. Simone Schindler

    Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Claire Arata

    Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. D'Juan T Farmer

    Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Punam Patel

    Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Joanna Smeeton

    Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. J Gage Crump

    Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, United States
    For correspondence
    gcrump@usc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3209-0026

Funding

National Institute of Dental and Craniofacial Research (R35 DE027550)

  • J Gage Crump

Burroughs Wellcome Fund (Postdoctoral Fellowship)

  • D'Juan T Farmer

National Institute of Dental and Craniofacial Research (F31 025549)

  • Dion Giovannone

National Institute of Dental and Craniofacial Research (K99 DE027218)

  • Joanna Smeeton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Clifford J Rosen, Maine Medical Center Research Institute, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#20771) of the University of Southern California.

Version history

  1. Received: October 10, 2018
  2. Accepted: February 13, 2019
  3. Accepted Manuscript published: February 20, 2019 (version 1)
  4. Version of Record published: March 4, 2019 (version 2)

Copyright

© 2019, Giovannone et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,679
    views
  • 622
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dion Giovannone
  2. Sandeep Paul
  3. Simone Schindler
  4. Claire Arata
  5. D'Juan T Farmer
  6. Punam Patel
  7. Joanna Smeeton
  8. J Gage Crump
(2019)
Programmed conversion of hypertrophic chondrocytes into osteoblasts and marrow adipocytes within zebrafish bones
eLife 8:e42736.
https://doi.org/10.7554/eLife.42736

Share this article

https://doi.org/10.7554/eLife.42736

Further reading

    1. Developmental Biology
    Edgar M Pera, Josefine Nilsson-De Moura ... Ivana Milas
    Research Article

    We previously showed that SerpinE2 and the serine protease HtrA1 modulate fibroblast growth factor (FGF) signaling in germ layer specification and head-to-tail development of Xenopus embryos. Here, we present an extracellular proteolytic mechanism involving this serpin-protease system in the developing neural crest (NC). Knockdown of SerpinE2 by injected antisense morpholino oligonucleotides did not affect the specification of NC progenitors but instead inhibited the migration of NC cells, causing defects in dorsal fin, melanocyte, and craniofacial cartilage formation. Similarly, overexpression of the HtrA1 protease impaired NC cell migration and the formation of NC-derived structures. The phenotype of SerpinE2 knockdown was overcome by concomitant downregulation of HtrA1, indicating that SerpinE2 stimulates NC migration by inhibiting endogenous HtrA1 activity. SerpinE2 binds to HtrA1, and the HtrA1 protease triggers degradation of the cell surface proteoglycan Syndecan-4 (Sdc4). Microinjection of Sdc4 mRNA partially rescued NC migration defects induced by both HtrA1 upregulation and SerpinE2 downregulation. These epistatic experiments suggest a proteolytic pathway by a double inhibition mechanism:

    SerpinE2 ┤HtrA1 protease ┤Syndecan-4 → NC cell migration.

    1. Developmental Biology
    2. Neuroscience
    Kristine B Walhovd, Stine K Krogsrud ... Didac Vidal-Pineiro
    Research Article

    Human fetal development has been associated with brain health at later stages. It is unknown whether growth in utero, as indexed by birth weight (BW), relates consistently to lifespan brain characteristics and changes, and to what extent these influences are of a genetic or environmental nature. Here we show remarkably stable and lifelong positive associations between BW and cortical surface area and volume across and within developmental, aging and lifespan longitudinal samples (N = 5794, 4–82 y of age, w/386 monozygotic twins, followed for up to 8.3 y w/12,088 brain MRIs). In contrast, no consistent effect of BW on brain changes was observed. Partly environmental effects were indicated by analysis of twin BW discordance. In conclusion, the influence of prenatal growth on cortical topography is stable and reliable through the lifespan. This early-life factor appears to influence the brain by association of brain reserve, rather than brain maintenance. Thus, fetal influences appear omnipresent in the spacetime of the human brain throughout the human lifespan. Optimizing fetal growth may increase brain reserve for life, also in aging.