Programmed conversion of hypertrophic chondrocytes into osteoblasts and marrow adipocytes within zebrafish bones

  1. Dion Giovannone
  2. Sandeep Paul
  3. Simone Schindler
  4. Claire Arata
  5. D'Juan T Farmer
  6. Punam Patel
  7. Joanna Smeeton
  8. J Gage Crump  Is a corresponding author
  1. Keck School of Medicine of University of Southern California, United States

Abstract

Much of the vertebrate skeleton develops from cartilage templates that are progressively remodeled into bone. Lineage tracing studies in mouse suggest that chondrocytes within these templates persist and become osteoblasts, yet the underlying mechanisms of this process and whether chondrocytes can generate other derivatives remain unclear. We find that zebrafish cartilages undergo extensive remodeling and vascularization during juvenile stages to generate fat-filled bones. Growth plate chondrocytes marked by sox10 and col2a1a contribute to osteoblasts, marrow adipocytes, and mesenchymal cells within adult bones. At the edge of the hypertrophic zone, chondrocytes re-enter the cell cycle and express leptin receptor (lepr), suggesting conversion into progenitors. Further, mutation of matrix metalloproteinase 9 (mmp9) results in delayed growth plate remodeling and fewer marrow adipocytes. Our data support Mmp9-dependent growth plate remodeling and conversion of chondrocytes into osteoblasts and marrow adipocytes as conserved features of bony vertebrates.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Dion Giovannone

    Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sandeep Paul

    Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2721-1874
  3. Simone Schindler

    Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Claire Arata

    Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. D'Juan T Farmer

    Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Punam Patel

    Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Joanna Smeeton

    Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. J Gage Crump

    Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, United States
    For correspondence
    gcrump@usc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3209-0026

Funding

National Institute of Dental and Craniofacial Research (R35 DE027550)

  • J Gage Crump

Burroughs Wellcome Fund (Postdoctoral Fellowship)

  • D'Juan T Farmer

National Institute of Dental and Craniofacial Research (F31 025549)

  • Dion Giovannone

National Institute of Dental and Craniofacial Research (K99 DE027218)

  • Joanna Smeeton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#20771) of the University of Southern California.

Copyright

© 2019, Giovannone et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,816
    views
  • 640
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dion Giovannone
  2. Sandeep Paul
  3. Simone Schindler
  4. Claire Arata
  5. D'Juan T Farmer
  6. Punam Patel
  7. Joanna Smeeton
  8. J Gage Crump
(2019)
Programmed conversion of hypertrophic chondrocytes into osteoblasts and marrow adipocytes within zebrafish bones
eLife 8:e42736.
https://doi.org/10.7554/eLife.42736

Share this article

https://doi.org/10.7554/eLife.42736

Further reading

    1. Developmental Biology
    Sebastian Deichsel, Lisa Frankenreiter ... Anja C Nagel
    Research Article

    Notch signalling activity regulates hematopoiesis in Drosophila and vertebrates alike. Parasitoid wasp infestation of Drosophila larvae, however, requires a timely downregulation of Notch activity to allow the formation of encapsulation-active blood cells. Here, we show that the Drosophila CSL transcription factor Suppressor of Hairless [Su(H)] is phosphorylated at Serine 269 in response to parasitoid wasp infestation. As this phosphorylation interferes with the DNA binding of Su(H), it reversibly precludes its activity. Accordingly, phospho-deficient Su(H)S269A mutants are immune-compromised. A screen for kinases involved in Su(H) phosphorylation identified Pkc53E, required for normal hematopoiesis as well as for parasitoid immune response. Genetic and molecular interactions support the specificity of the Su(H)-Pkc53E relationship. Moreover, phorbol ester treatment inhibits Su(H) activity in vivo and in human cell culture. We conclude that Pkc53E targets Su(H) during parasitic wasp infestation, thereby remodelling the blood cell population required for wasp egg encapsulation.

    1. Developmental Biology
    Shuhei So, Masayo Asakawa, Hitoshi Sawa
    Research Article

    Organogenesis requires the proper production of diverse cell types and their positioning/migration. However, the coordination of these processes during development remains poorly understood. The gonad in C. elegans exhibits a mirror-symmetric structure guided by the migration of distal tip cells (DTCs), which result from asymmetric divisions of somatic gonadal precursors (SGPs; Z1 and Z4). We found that the polarity of Z1 and Z4, which possess mirror-symmetric orientation, is controlled by the redundant functions of the LIN-17/Frizzled receptor and three Wnt proteins (CWN-1, CWN-2, and EGL-20) with distinct functions. In lin-17 mutants, CWN-2 promotes normal polarity in both Z1 and Z4, while CWN-1 promotes reverse and normal polarity in Z1 and Z4, respectively. In contrast, EGL-20 inhibits the polarization of both Z1 and Z4. In lin-17 egl-20 cwn-2 triple mutants with a polarity reversal of Z1, DTCs from Z1 frequently miss-migrate to the posterior side. Our further analysis demonstrates that the mis-positioning of DTCs in the gonad due to the polarity reversal of Z1 leads to mis-migration. Similar mis-migration was also observed in cki-1(RNAi) animals producing ectopic DTCs. These results highlight the role of Wnt signaling in coordinating the production and migration of DTCs to establish a mirror-symmetric organ.