Shank3 Modulates Sleep and Expression of Circadian Transcription Factors

  1. Ashley Ingiosi
  2. Hannah Schoch
  3. Taylor P Wintler
  4. Kristan G Singletary
  5. Dario Righelli
  6. Leandro Roser
  7. Elizabeth Medina
  8. Davide Risso
  9. Marcos G Frank  Is a corresponding author
  10. Lucia Peixoto  Is a corresponding author
  1. Washington State University, United States
  2. National Research Council (CNR), Italy
  3. University of Padova, Italy

Abstract

Autism Spectrum Disorder (ASD) is the most prevalent neurodevelopmental disorder in the United States and often co-presents with sleep problems. Sleep problems in ASD predict the severity of ASD core diagnostic symptoms and have a considerable impact on the quality of life of caregivers. Little is known, however, about the underlying molecular mechanisms of sleep problems in ASD. We investigated the role of Shank3, a high confidence ASD gene candidate, in sleep architecture and regulation. We show that mice lacking exon 21 of Shank3 have problems falling asleep even when sleepy. Using RNA-seq we show that sleep deprivation increases the differences in prefrontal cortex gene expression between mutants and wild types, downregulating circadian transcription factors Per3, Bhlhe41, Hlf, Tef, and Nr1d1. Shank3 mutants also have trouble regulating wheel-running activity in constant darkness. Overall, our study shows that Shank3 is an important modulator of sleep and clock gene expression.

Data availability

Sequencing data have been deposited in GEO under accession code GSE113754. Source data files have been provided for Figures 1-4, Tables 1 and 2 and Supplementary Files 1 and 2. The R code used in this article is available on GitHub (github.com/drighelli/peixoto). The R code used for the statistical analysis of RNA-seq and circadian wheel running data is also available in Source Code file 1.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Ashley Ingiosi

    Department of Biomedical Science, Washington State University, Spokane, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3035-3010
  2. Hannah Schoch

    Department of Biomedical Science, Washington State University, Spokane, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Taylor P Wintler

    Department of Biomedical Science, Washington State University, Spokane, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kristan G Singletary

    Department of Biomedical Science, Washington State University, Spokane, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Dario Righelli

    Instituto per le Applicazioni del Calcolo, National Research Council (CNR), Napoli, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1504-3583
  6. Leandro Roser

    Department of Biomedical Science, Washington State University, Spokane, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Elizabeth Medina

    Department of Biomedical Science, Washington State University, Spokane, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Davide Risso

    Department of Statistical Sciences, University of Padova, Padova, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8508-5012
  9. Marcos G Frank

    Department of Biomedical Science, Washington State University, Spokane, United States
    For correspondence
    marcos.frank@wsu.edu
    Competing interests
    The authors declare that no competing interests exist.
  10. Lucia Peixoto

    Department of Biomedical Science, Washington State University, Spokane, United States
    For correspondence
    lucia.peixoto@wsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8444-9600

Funding

National Institute of Neurological Disorders and Stroke (K01NS104172)

  • Lucia Peixoto

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of Washington State University. Protocol numbers: 04705-001 and 04704-001IACUC 6155-Peixoto BreedingIACUC 4705-Peixoto experimentalIACUC 4581-Frank experimental

Human subjects: PMSIR patient data was obtained de-identified under IRB exemption 15005-Peixoto

Copyright

© 2019, Ingiosi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,384
    views
  • 867
    downloads
  • 65
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ashley Ingiosi
  2. Hannah Schoch
  3. Taylor P Wintler
  4. Kristan G Singletary
  5. Dario Righelli
  6. Leandro Roser
  7. Elizabeth Medina
  8. Davide Risso
  9. Marcos G Frank
  10. Lucia Peixoto
(2019)
Shank3 Modulates Sleep and Expression of Circadian Transcription Factors
eLife 8:e42819.
https://doi.org/10.7554/eLife.42819

Share this article

https://doi.org/10.7554/eLife.42819

Further reading

    1. Neuroscience
    Cristina Gil Avila, Elisabeth S May ... Markus Ploner
    Research Article

    Chronic pain is a prevalent and debilitating condition whose neural mechanisms are incompletely understood. An imbalance of cerebral excitation and inhibition (E/I), particularly in the medial prefrontal cortex (mPFC), is believed to represent a crucial mechanism in the development and maintenance of chronic pain. Thus, identifying a non-invasive, scalable marker of E/I could provide valuable insights into the neural mechanisms of chronic pain and aid in developing clinically useful biomarkers. Recently, the aperiodic component of the electroencephalography (EEG) power spectrum has been proposed to represent a non-invasive proxy for E/I. We, therefore, assessed the aperiodic component in the mPFC of resting-state EEG recordings in 149 people with chronic pain and 115 healthy participants. We found robust evidence against differences in the aperiodic component in the mPFC between people with chronic pain and healthy participants, and no correlation between the aperiodic component and pain intensity. These findings were consistent across different subtypes of chronic pain and were similarly found in a whole-brain analysis. Their robustness was supported by preregistration and multiverse analyses across many different methodological choices. Together, our results suggest that the EEG aperiodic component does not differentiate between people with chronic pain and healthy individuals. These findings and the rigorous methodological approach can guide future studies investigating non-invasive, scalable markers of cerebral dysfunction in people with chronic pain and beyond.

    1. Neuroscience
    Gyeong Hee Pyeon, Hyewon Cho ... Yong Sang Jo
    Research Article

    Recent studies suggest that calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) represent aversive information and signal a general alarm to the forebrain. If CGRP neurons serve as a true general alarm, their activation would modulate both passive nad active defensive behaviors depending on the magnitude and context of the threat. However, most prior research has focused on the role of CGRP neurons in passive freezing responses, with limited exploration of their involvement in active defensive behaviors. To address this, we examined the role of CGRP neurons in active defensive behavior using a predator-like robot programmed to chase mice. Our electrophysiological results revealed that CGRP neurons encode the intensity of aversive stimuli through variations in firing durations and amplitudes. Optogenetic activation of CGRP neuron during robot chasing elevated flight responses in both conditioning and retention tests, presumably by amyplifying the perception of the threat as more imminent and dangerous. In contrast, animals with inactivated CGRP neurons exhibited reduced flight responses, even when the robot was programmed to appear highly threatening during conditioning. These findings expand the understanding of CGRP neurons in the PBN as a critical alarm system, capable of dynamically regulating active defensive behaviors by amplifying threat perception, ensuring adaptive responses to varying levels of danger.