Abstract

Rotavirus genome replication and assembly take place in cytoplasmic electron dense inclusions termed viroplasms (VPs). Previous conventional optical microscopy studies observing the intracellular distribution of rotavirus proteins and their organization in VPs have lacked molecular-scale spatial resolution, due to inherent spatial resolution constraints. In this work we employed super-resolution microscopy to reveal the nanometric-scale organization of VPs formed during rotavirus infection, and quantitatively describes the structural organization of seven viral proteins within and around the VPs. The observed viral components are spatially organized as 5 concentric layers, in which NSP5 localizes at the center of the VPs, surrounded by a layer of NSP2 and NSP4 proteins, followed by an intermediate zone comprised of the VP1, VP2, VP6. In the outermost zone, we observed a ring of VP4 and finally a layer of VP7. These findings show that rotavirus VPs are highly organized organelles.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Yasel Garcés Suárez

    Departamento de Genética del Desarrollo y Fisiología Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  2. Jose L Martínez

    Departamento de Genética del Desarrollo y Fisiología Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  3. David Torres Hernández

    Departamento de Genética del Desarrollo y Fisiología Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  4. Haydee Olinca Hernández

    Departamento de Genética del Desarrollo y Fisiología Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  5. Arianna Pérez-Delgado

    Departamento de Genética del Desarrollo y Fisiología Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  6. Mayra Méndez

    Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  7. Christopher D Wood

    Departamento de Genética del Desarrollo y Fisiología Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  8. Juan Manuel Rendon-Mancha

    Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9629-7050
  9. Daniela Silva-Ayala

    Center for Virology and Vaccine Research, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Susana López

    Departamento de Genética del Desarrollo y Fisiología Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  11. Adán Guerrero

    Departamento de Genética del Desarrollo y Fisiología Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
    For correspondence
    adanog@ibt.unam.mx
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4389-5516
  12. Carlos F Arias

    Departamento de Genética del Desarrollo y Fisiología Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
    For correspondence
    arias@ibt.unam.mx
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3130-4501

Funding

DGAPA-PAPIIT-UNAM (IG200317)

  • Susana López
  • Carlos F Arias

DGAPA-PAPIIT-UNAM (IA202417)

  • Adán Guerrero

DGTIC-UNAM (SC15-1-IR-89)

  • Adán Guerrero

Conacyt-Mexico (252213)

  • Adán Guerrero

DGAPA-PAPIIT-UNAM (IN202312)

  • Haydee Olinca Hernández

DGTIC-UNAM (SC16-1-IR-102)

  • Adán Guerrero

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Garcés Suárez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,589
    views
  • 411
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yasel Garcés Suárez
  2. Jose L Martínez
  3. David Torres Hernández
  4. Haydee Olinca Hernández
  5. Arianna Pérez-Delgado
  6. Mayra Méndez
  7. Christopher D Wood
  8. Juan Manuel Rendon-Mancha
  9. Daniela Silva-Ayala
  10. Susana López
  11. Adán Guerrero
  12. Carlos F Arias
(2019)
Nanoscale organization of rotavirus replication machineries
eLife 8:e42906.
https://doi.org/10.7554/eLife.42906

Share this article

https://doi.org/10.7554/eLife.42906

Further reading

    1. Microbiology and Infectious Disease
    Li Zhang, Fen Hu ... Hang Yang
    Research Article

    Phage-derived peptidoglycan hydrolases (i.e. lysins) are considered promising alternatives to conventional antibiotics due to their direct peptidoglycan degradation activity and low risk of resistance development. The discovery of these enzymes is often hampered by the limited availability of phage genomes. Herein, we report a new strategy to mine active peptidoglycan hydrolases from bacterial proteomes by lysin-derived antimicrobial peptide-primed screening. As a proof-of-concept, five peptidoglycan hydrolases from the Acinetobacter baumannii proteome (PHAb7-PHAb11) were identified using PlyF307 lysin-derived peptide as a template. Among them, PHAb10 and PHAb11 showed potent bactericidal activity against multiple pathogens even after treatment at 100°C for 1 hr, while the other three were thermosensitive. We solved the crystal structures of PHAb8, PHAb10, and PHAb11 and unveiled that hyper-thermostable PHAb10 underwent a unique folding-refolding thermodynamic scheme mediated by a dimer-monomer transition, while thermosensitive PHAb8 formed a monomer. Two mouse models of bacterial infection further demonstrated the safety and efficacy of PHAb10. In conclusion, our antimicrobial peptide-primed strategy provides new clues for the discovery of promising antimicrobial drugs.

    1. Ecology
    2. Microbiology and Infectious Disease
    Tom Clegg, Samraat Pawar
    Research Article Updated

    Predicting how species diversity changes along environmental gradients is an enduring problem in ecology. In microbes, current theories tend to invoke energy availability and enzyme kinetics as the main drivers of temperature-richness relationships. Here, we derive a general empirically-grounded theory that can explain this phenomenon by linking microbial species richness in competitive communities to variation in the temperature-dependence of their interaction and growth rates. Specifically, the shape of the microbial community temperature-richness relationship depends on how rapidly the strength of effective competition between species pairs changes with temperature relative to the variance of their growth rates. Furthermore, it predicts that a thermal specialist-generalist tradeoff in growth rates alters coexistence by shifting this balance, causing richness to peak at relatively higher temperatures. Finally, we show that the observed patterns of variation in thermal performance curves of metabolic traits across extant bacterial taxa is indeed sufficient to generate the variety of community-level temperature-richness responses observed in the real world. Our results provide a new and general mechanism that can help explain temperature-diversity gradients in microbial communities, and provide a quantitative framework for interlinking variation in the thermal physiology of microbial species to their community-level diversity.