Abstract

The Notch signalling pathway plays fundamental roles in diverse developmental processes in metazoans, where it is important in driving cell fate and directing differentiation of various cell types. However, we still have limited knowledge about the role of Notch in early preimplantation stages of mammalian development, or how it interacts with other signalling pathways active at these stages such as Hippo. By using genetic and pharmacological tools in vivo, together with image analysis of single embryos and pluripotent cell culture, we have found that Notch is active from the 4-cell stage. Transcriptomic analysis in single morula identified novel Notch targets, such as early naïve pluripotency markers or transcriptional repressors such as TLE4. Our results reveal a previously undescribed role for Notch in driving transitions during the gradual loss of potency that takes place in the early mouse embryo prior to the first lineage decisions.

Data availability

Sequencing data have been deposited in GEO under accession code GSE121979.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Sergio Menchero

    Department of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4592-7259
  2. Isabel Rollan

    Department of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Antonio Lopez-Izquierdo

    Department of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Maria Jose Andreu

    Department of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Julio Sainz de Aja

    Department of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Minjung Kang

    Developmental Biology Program, Sloan Kettering Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Javier Adan

    Department of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Rui Benedito

    Department of Molecular Genetics of Angiogenesis, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Teresa Rayon

    Department of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Anna-Katerina Hadjantonakis

    Developmental Biology Program, Sloan Kettering Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7580-5124
  11. Miguel Manzanares

    Department of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
    For correspondence
    mmanzanares@cnic.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4849-2836

Funding

Ministerio de Economía y Competitividad (BFU2017-84914-P)

  • Sergio Menchero
  • Isabel Rollan
  • Antonio Lopez-Izquierdo
  • Maria Jose Andreu
  • Julio Sainz de Aja
  • Javier Adan
  • Teresa Rayon
  • Miguel Manzanares

ProCNIC Foundation

  • Sergio Menchero
  • Isabel Rollan
  • Antonio Lopez-Izquierdo
  • Maria Jose Andreu
  • Julio Sainz de Aja
  • Javier Adan
  • Rui Benedito
  • Teresa Rayon
  • Miguel Manzanares

National Institutes of Health (NIH-R01DK084391)

  • Minjung Kang
  • Anna-Katerina Hadjantonakis

Ministerio de Economía y Competitividad (BFU2015-72319-EXP)

  • Sergio Menchero
  • Isabel Rollan
  • Maria Jose Andreu
  • Miguel Manzanares

Ministerio de Economía y Competitividad (SEV-2015-0505)

  • Sergio Menchero
  • Isabel Rollan
  • Antonio Lopez-Izquierdo
  • Maria Jose Andreu
  • Julio Sainz de Aja
  • Javier Adan
  • Rui Benedito
  • Teresa Rayon
  • Miguel Manzanares

Ministerio de Economía y Competitividad (SVP-2013-067930)

  • Sergio Menchero

National Institutes of Health (NIH-R01HD094868)

  • Minjung Kang
  • Anna-Katerina Hadjantonakis

National Institutes of Health (NIH-P30CA008748)

  • Minjung Kang
  • Anna-Katerina Hadjantonakis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with national and European Legislation. Procedures were approved by the CNIC Animal Welfare Ethics Committee and by the Area of Animal Protection of the Regional Government of Madrid (ref. PROEX 196/14).

Copyright

© 2019, Menchero et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,228
    views
  • 647
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sergio Menchero
  2. Isabel Rollan
  3. Antonio Lopez-Izquierdo
  4. Maria Jose Andreu
  5. Julio Sainz de Aja
  6. Minjung Kang
  7. Javier Adan
  8. Rui Benedito
  9. Teresa Rayon
  10. Anna-Katerina Hadjantonakis
  11. Miguel Manzanares
(2019)
Transitions in cell potency during early mouse development are driven by Notch
eLife 8:e42930.
https://doi.org/10.7554/eLife.42930

Share this article

https://doi.org/10.7554/eLife.42930

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bhumil Patel, Maryke Grobler ... Needhi Bhalla
    Research Article

    Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2’s conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ashley L Cook, Surojit Sur ... Nicolas Wyhs
    Research Article

    Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high-throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD in human cells. This screen implicated disruption of kinase SMG1’s phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from human and murine truncating mutations in vitro and murine cells in vivo. Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable human leukocyte antigens (HLA) class I-associated peptides from NMD-downregulated proteins on the surface of human cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases.