Transitions in cell potency during early mouse development are driven by Notch
Abstract
The Notch signalling pathway plays fundamental roles in diverse developmental processes in metazoans, where it is important in driving cell fate and directing differentiation of various cell types. However, we still have limited knowledge about the role of Notch in early preimplantation stages of mammalian development, or how it interacts with other signalling pathways active at these stages such as Hippo. By using genetic and pharmacological tools in vivo, together with image analysis of single embryos and pluripotent cell culture, we have found that Notch is active from the 4-cell stage. Transcriptomic analysis in single morula identified novel Notch targets, such as early naïve pluripotency markers or transcriptional repressors such as TLE4. Our results reveal a previously undescribed role for Notch in driving transitions during the gradual loss of potency that takes place in the early mouse embryo prior to the first lineage decisions.
Data availability
Sequencing data have been deposited in GEO under accession code GSE121979.
-
Transitions in cell potency during early mouse development are driven by NotchNCBI Gene Expression Omnibus, GSE121979.
-
The landscape of accessible chromatin in mammalian pre-implantation embryosNCBI Gene Expression Omnibus, GSE66390.
Article and author information
Author details
Funding
Ministerio de Economía y Competitividad (BFU2017-84914-P)
- Sergio Menchero
- Isabel Rollan
- Antonio Lopez-Izquierdo
- Maria Jose Andreu
- Julio Sainz de Aja
- Javier Adan
- Teresa Rayon
- Miguel Manzanares
ProCNIC Foundation
- Sergio Menchero
- Isabel Rollan
- Antonio Lopez-Izquierdo
- Maria Jose Andreu
- Julio Sainz de Aja
- Javier Adan
- Rui Benedito
- Teresa Rayon
- Miguel Manzanares
National Institutes of Health (NIH-R01DK084391)
- Minjung Kang
- Anna-Katerina Hadjantonakis
Ministerio de Economía y Competitividad (BFU2015-72319-EXP)
- Sergio Menchero
- Isabel Rollan
- Maria Jose Andreu
- Miguel Manzanares
Ministerio de Economía y Competitividad (SEV-2015-0505)
- Sergio Menchero
- Isabel Rollan
- Antonio Lopez-Izquierdo
- Maria Jose Andreu
- Julio Sainz de Aja
- Javier Adan
- Rui Benedito
- Teresa Rayon
- Miguel Manzanares
Ministerio de Economía y Competitividad (SVP-2013-067930)
- Sergio Menchero
National Institutes of Health (NIH-R01HD094868)
- Minjung Kang
- Anna-Katerina Hadjantonakis
National Institutes of Health (NIH-P30CA008748)
- Minjung Kang
- Anna-Katerina Hadjantonakis
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This study was performed in strict accordance with national and European Legislation. Procedures were approved by the CNIC Animal Welfare Ethics Committee and by the Area of Animal Protection of the Regional Government of Madrid (ref. PROEX 196/14).
Copyright
© 2019, Menchero et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,172
- views
-
- 641
- downloads
-
- 38
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Chromosomes and Gene Expression
- Neuroscience
Pathogenic variants in subunits of RNA polymerase (Pol) III cause a spectrum of Polr3-related neurodegenerative diseases including 4H leukodystrophy. Disease onset occurs from infancy to early adulthood and is associated with a variable range and severity of neurological and non-neurological features. The molecular basis of Polr3-related disease pathogenesis is unknown. We developed a postnatal whole-body mouse model expressing pathogenic Polr3a mutations to examine the molecular mechanisms by which reduced Pol III transcription results primarily in central nervous system phenotypes. Polr3a mutant mice exhibit behavioral deficits, cerebral pathology and exocrine pancreatic atrophy. Transcriptome and immunohistochemistry analyses of cerebra during disease progression show a reduction in most Pol III transcripts, induction of innate immune and integrated stress responses and cell-type-specific gene expression changes reflecting neuron and oligodendrocyte loss and microglial activation. Earlier in the disease when integrated stress and innate immune responses are minimally induced, mature tRNA sequencing revealed a global reduction in tRNA levels and an altered tRNA profile but no changes in other Pol III transcripts. Thus, changes in the size and/or composition of the tRNA pool have a causal role in disease initiation. Our findings reveal different tissue- and brain region-specific sensitivities to a defect in Pol III transcription.
-
- Biochemistry and Chemical Biology
- Chromosomes and Gene Expression
The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated. Moreover, in humans, the specific biological functions of the two DCP1 paralogs, DCP1a and DCP1b, remain largely unknown. To investigate the role of human DCP1, we generated cell lines that were deficient in DCP1a, DCP1b, or both to evaluate the importance of DCP1 in the decapping machinery. Our results highlight the importance of human DCP1 in decapping process and show that the EVH1 domain of DCP1 enhances the mRNA-binding affinity of DCP2. Transcriptome and metabolome analyses outline the distinct functions of DCP1a and DCP1b in human cells, regulating specific endogenous mRNA targets and biological processes. Overall, our findings provide insights into the molecular mechanism of human DCP1 in mRNA decapping and shed light on the distinct functions of its paralogs.