Non-selective inhibition of inappropriate motor-tendencies during response-conflict by a fronto-subthalamic mechanism

  1. Jan R Wessel  Is a corresponding author
  2. Darcy A Waller
  3. Jeremy DW Greenlee
  1. University of Iowa Hospitals and Clinics, United States
  2. University of Iowa, United States


To effectively interact with their environment, humans must often select actions from multiple incompatible options. Existing theories propose that during motoric response-conflict, inappropriate motor activity is actively (and perhaps non-selectively) suppressed by an inhibitory fronto-basal ganglia mechanism. We here tested this theory across three experiments. First, using scalp-EEG, we found that both outright action-stopping and response-conflict during action-selection invoke low-frequency activity of a common fronto-central source, whose activity relates to trial-by-trial behavioral indices of inhibition in both tasks. Second, using simultaneous intracranial recordings from the basal ganglia and motor cortex, we found that response-conflict increases the influence of the subthalamic nucleus on M1-representations of incorrect response-tendencies. Finally, using transcranial magnetic stimulation, we found that during the same time period when conflict-related STN-to-M1 communication is increased, cortico-spinal excitability is broadly suppressed. Together, these findings demonstrate that fronto-BG networks buttress action-selection under response-conflict by rapidly and non-selectively net-inhibiting inappropriate motor tendencies.

Data availability

The experimental code, data, and analysis routines underlying this research can be found on the Open Science Framework at the following URL:

The following data sets were generated

Article and author information

Author details

  1. Jan R Wessel

    Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, United States
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7298-6601
  2. Darcy A Waller

    Department of Psychological and Brain Sciences, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jeremy DW Greenlee

    Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.


National Institute of Neurological Disorders and Stroke (R01 NS102201)

  • Jan R Wessel

National Science Foundation (CAREER 1752355)

  • Jan R Wessel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Timothy Verstynen, Carnegie Mellon University, United States


Human subjects: Informed consent was collected from all subjects and all procedures were approved by the local ethics committee at the University of Iowa (IRB #201511709, IRB # 201402720, IRB #201612707).

Version history

  1. Received: October 18, 2018
  2. Accepted: May 6, 2019
  3. Accepted Manuscript published: May 7, 2019 (version 1)
  4. Version of Record published: May 23, 2019 (version 2)


© 2019, Wessel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 1,711
  • 221
  • 49

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jan R Wessel
  2. Darcy A Waller
  3. Jeremy DW Greenlee
Non-selective inhibition of inappropriate motor-tendencies during response-conflict by a fronto-subthalamic mechanism
eLife 8:e42959.

Share this article

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.

    1. Neuroscience
    Nicholas GW Kennedy, Jessica C Lee ... Nathan M Holmes
    Research Article

    How is new information organized in memory? According to latent state theories, this is determined by the level of surprise, or prediction error, generated by the new information: a small prediction error leads to the updating of existing memory, large prediction error leads to encoding of a new memory. We tested this idea using a protocol in which rats were first conditioned to fear a stimulus paired with shock. The stimulus was then gradually extinguished by progressively reducing the shock intensity until the stimulus was presented alone. Consistent with latent state theories, this gradual extinction protocol (small prediction errors) was better than standard extinction (large prediction errors) in producing long-term suppression of fear responses, and the benefit of gradual extinction was due to updating of the conditioning memory with information about extinction. Thus, prediction error determines how new information is organized in memory, and latent state theories adequately describe the ways in which this occurs.