Non-selective inhibition of inappropriate motor-tendencies during response-conflict by a fronto-subthalamic mechanism

  1. Jan R Wessel  Is a corresponding author
  2. Darcy A Waller
  3. Jeremy DW Greenlee
  1. University of Iowa Hospitals and Clinics, United States
  2. University of Iowa, United States

Abstract

To effectively interact with their environment, humans must often select actions from multiple incompatible options. Existing theories propose that during motoric response-conflict, inappropriate motor activity is actively (and perhaps non-selectively) suppressed by an inhibitory fronto-basal ganglia mechanism. We here tested this theory across three experiments. First, using scalp-EEG, we found that both outright action-stopping and response-conflict during action-selection invoke low-frequency activity of a common fronto-central source, whose activity relates to trial-by-trial behavioral indices of inhibition in both tasks. Second, using simultaneous intracranial recordings from the basal ganglia and motor cortex, we found that response-conflict increases the influence of the subthalamic nucleus on M1-representations of incorrect response-tendencies. Finally, using transcranial magnetic stimulation, we found that during the same time period when conflict-related STN-to-M1 communication is increased, cortico-spinal excitability is broadly suppressed. Together, these findings demonstrate that fronto-BG networks buttress action-selection under response-conflict by rapidly and non-selectively net-inhibiting inappropriate motor tendencies.

Data availability

The experimental code, data, and analysis routines underlying this research can be found on the Open Science Framework at the following URL: https://osf.io/k3ypt/.

The following data sets were generated

Article and author information

Author details

  1. Jan R Wessel

    Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, United States
    For correspondence
    jan-wessel@uiowa.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7298-6601
  2. Darcy A Waller

    Department of Psychological and Brain Sciences, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jeremy DW Greenlee

    Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Neurological Disorders and Stroke (R01 NS102201)

  • Jan R Wessel

National Science Foundation (CAREER 1752355)

  • Jan R Wessel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent was collected from all subjects and all procedures were approved by the local ethics committee at the University of Iowa (IRB #201511709, IRB # 201402720, IRB #201612707).

Reviewing Editor

  1. Timothy Verstynen, Carnegie Mellon University, United States

Version history

  1. Received: October 18, 2018
  2. Accepted: May 6, 2019
  3. Accepted Manuscript published: May 7, 2019 (version 1)
  4. Version of Record published: May 23, 2019 (version 2)

Copyright

© 2019, Wessel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,643
    Page views
  • 213
    Downloads
  • 31
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jan R Wessel
  2. Darcy A Waller
  3. Jeremy DW Greenlee
(2019)
Non-selective inhibition of inappropriate motor-tendencies during response-conflict by a fronto-subthalamic mechanism
eLife 8:e42959.
https://doi.org/10.7554/eLife.42959

Further reading

    1. Neuroscience
    Louise Schenberg, Aïda Palou ... Mathieu Beraneck
    Research Article

    The functional complementarity of the vestibulo-ocular reflex (VOR) and optokinetic reflex (OKR) allows for optimal combined gaze stabilization responses (CGR) in light. While sensory substitution has been reported following complete vestibular loss, the capacity of the central vestibular system to compensate for partial peripheral vestibular loss remains to be determined. Here, we first demonstrate the efficacy of a 6-week subchronic ototoxic protocol in inducing transient and partial vestibular loss which equally affects the canal- and otolith-dependent VORs. Immunostaining of hair cells in the vestibular sensory epithelia revealed that organ-specific alteration of type I, but not type II, hair cells correlates with functional impairments. The decrease in VOR performance is paralleled with an increase in the gain of the OKR occurring in a specific range of frequencies where VOR normally dominates gaze stabilization, compatible with a sensory substitution process. Comparison of unimodal OKR or VOR versus bimodal CGR revealed that visuo-vestibular interactions remain reduced despite a significant recovery in the VOR. Modeling and sweep-based analysis revealed that the differential capacity to optimally combine OKR and VOR correlates with the reproducibility of the VOR responses. Overall, these results shed light on the multisensory reweighting occurring in pathologies with fluctuating peripheral vestibular malfunction.

    1. Neuroscience
    Mika Rubinov
    Review Article

    Genuinely new discovery transcends existing knowledge. Despite this, many analyses in systems neuroscience neglect to test new speculative hypotheses against benchmark empirical facts. Some of these analyses inadvertently use circular reasoning to present existing knowledge as new discovery. Here, I discuss that this problem can confound key results and estimate that it has affected more than three thousand studies in network neuroscience over the last decade. I suggest that future studies can reduce this problem by limiting the use of speculative evidence, integrating existing knowledge into benchmark models, and rigorously testing proposed discoveries against these models. I conclude with a summary of practical challenges and recommendations.