Proteotoxicity from aberrant ribosome biogenesis compromises cell fitness

  1. Blake W Tye
  2. Nicoletta Commins
  3. Lillia V Ryazanova
  4. Martin Wühr
  5. Michael Springer
  6. David Pincus
  7. L Stirling Churchman  Is a corresponding author
  1. Harvard Medical School, United States
  2. Princeton University, United States
  3. Whitehead Institute for Biomedical Research, United States
1 additional file

Additional files

All additional files

Any figure supplements, source code, source data, videos or supplementary files associated with this article are contained within this zip.

https://cdn.elifesciences.org/articles/43002/elife-43002-supp-v1.zip

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Blake W Tye
  2. Nicoletta Commins
  3. Lillia V Ryazanova
  4. Martin Wühr
  5. Michael Springer
  6. David Pincus
  7. L Stirling Churchman
(2019)
Proteotoxicity from aberrant ribosome biogenesis compromises cell fitness
eLife 8:e43002.
https://doi.org/10.7554/eLife.43002