MYOD1 functions as a clock amplifier as well as a critical co-factor for downstream circadian gene expression in muscle

  1. Brian A Hodge
  2. Xiping Zhang
  3. Miguel A Gutierrez-Monreal
  4. Yi Cao
  5. David W Hammers
  6. Zizhen Yao
  7. Christopher A Wolff
  8. Ping Du
  9. Denise Kemler
  10. Andrew R Judge
  11. Karyn A Esser  Is a corresponding author
  1. University of Florida, United States
  2. Genentech Inc, United States
  3. Allen Institute for Brain Science, United States

Abstract

In the present study we show that the master myogenic regulatory factor, MYOD1, is a positive modulator of molecular clock amplitude and functions with the core clock factors for expression of clock-controlled genes in skeletal muscle. We demonstrate that MYOD1 directly regulates the expression and circadian amplitude of the positive core clock factor Bmal1. We identify a non-canonical E-box element in Bmal1 and demonstrate that is required for full MYOD1-responsiveness. Bimolecular fluorescence complementation assays demonstrate that MYOD1 colocalizes with both BMAL1 and CLOCK throughout myonuclei. We demonstrate that MYOD1 and BMAL1:CLOCK work in a synergistic fashion through a tandem E-box to regulate the expression and amplitude of the muscle specific clock-controlled gene, Titin-cap (Tcap). In conclusion, these findings reveal mechanistic roles for the muscle specific transcription factor MYOD1 in the regulation of molecular clock amplitude as well as synergistic regulation of clock-controlled genes in skeletal muscle.

Data availability

ChIP seq data for muscle with MyoD is deposited in GEO under accession code GSE122082.

The following data sets were generated

Article and author information

Author details

  1. Brian A Hodge

    Department of Physiology and Functional Genomics, University of Florida, Gainesville, United States
    Competing interests
    No competing interests declared.
  2. Xiping Zhang

    Department of Physiology and Functional Genomics, University of Florida, Gainesville, United States
    Competing interests
    No competing interests declared.
  3. Miguel A Gutierrez-Monreal

    Department of Physiology and Functional Genomics, University of Florida, Gainesville, United States
    Competing interests
    No competing interests declared.
  4. Yi Cao

    Department of Bioinformatics and Computational Biology, Genentech Inc, South San Francisco, United States
    Competing interests
    Yi Cao, Is affiliated with Genentech Inc.. The author has no other competing interests to declare.
  5. David W Hammers

    Department of Pharmacology and Therapeutics, University of Florida, Gainesville, United States
    Competing interests
    No competing interests declared.
  6. Zizhen Yao

    Cell Types Program, Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
  7. Christopher A Wolff

    Department of Physiology and Functional Genomics, University of Florida, Gainesville, United States
    Competing interests
    No competing interests declared.
  8. Ping Du

    Department of Physiology and Functional Genomics, University of Florida, Gainesville, United States
    Competing interests
    No competing interests declared.
  9. Denise Kemler

    Department of Physiology and Functional Genomics, University of Florida, Gainesville, United States
    Competing interests
    No competing interests declared.
  10. Andrew R Judge

    Department of Physical Therapy, University of Florida, Gainesville, United States
    Competing interests
    No competing interests declared.
  11. Karyn A Esser

    Department of Physiology and Functional Genomics, University of Florida, Gainesville, United States
    For correspondence
    kaesser@ufl.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5791-1441

Funding

National Institutes of Health (R01AR066082)

  • Karyn A Esser

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (IACUC Study 201809136) of the University of Florida.

Copyright

© 2019, Hodge et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,901
    views
  • 539
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brian A Hodge
  2. Xiping Zhang
  3. Miguel A Gutierrez-Monreal
  4. Yi Cao
  5. David W Hammers
  6. Zizhen Yao
  7. Christopher A Wolff
  8. Ping Du
  9. Denise Kemler
  10. Andrew R Judge
  11. Karyn A Esser
(2019)
MYOD1 functions as a clock amplifier as well as a critical co-factor for downstream circadian gene expression in muscle
eLife 8:e43017.
https://doi.org/10.7554/eLife.43017

Share this article

https://doi.org/10.7554/eLife.43017

Further reading

    1. Cell Biology
    Yan Song, Linda J Fothergill ... Gene W Yeo
    Research Article

    Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify 14 EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic, and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.