A causal role for the precuneus in network-wide theta and gamma oscillatory activity during complex memory retrieval

  1. Melissa Hebscher  Is a corresponding author
  2. Jed A Meltzer
  3. Asaf Gilboa  Is a corresponding author
  1. Northwestern University Feinberg School of Medicine, United States
  2. Rotman Research Institute, Canada

Abstract

Complex memory of personal events is thought to depend on coordinated reinstatement of cortical representations by the medial temporal lobes (MTL). MTL-cortical theta and gamma coupling is believed to mediate such coordination, but which cortical structures are critical for retrieval and how they influence oscillatory coupling is unclear. We used magnetoencephalography (MEG) combined with continuous theta burst stimulation (cTBS) to (i) clarify the roles of theta and gamma oscillations in network-wide communication during naturalistic memory retrieval, and (ii) understand the causal relationship between cortical network nodes and oscillatory communication. Retrieval was associated with MTL-posterior neocortical theta phase coupling and theta-gamma phase-amplitude coupling relative to a rest period. Precuneus cTBS altered MTL-neocortical communication by modulating theta and gamma oscillatory coupling. These findings provide a mechanistic account for MTL-cortical communication and demonstrate that the precuneus is a critical cortical node of oscillatory activity, coordinating cross-regional interactions that drive remembering.

Data availability

All data generated during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3C, and 4C.

The following data sets were generated

Article and author information

Author details

  1. Melissa Hebscher

    Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, United States
    For correspondence
    melhebscher@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1863-5464
  2. Jed A Meltzer

    Rotman Research Institute, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Asaf Gilboa

    Rotman Research Institute, Toronto, Canada
    For correspondence
    agilboa@research.baycrest.org
    Competing interests
    The authors declare that no competing interests exist.

Funding

Natural Sciences and Engineering Research Council of Canada (Discovery Grant 378291)

  • Asaf Gilboa

Natural Sciences and Engineering Research Council of Canada (Postgraduate Scholarship- Doctoral)

  • Melissa Hebscher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by the Rotman Research Institute/Baycrest Hospital ethics committee (REB #16-33). All participants provided informed consent prior to participating in the experiment.

Copyright

© 2019, Hebscher et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,510
    views
  • 439
    downloads
  • 63
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Melissa Hebscher
  2. Jed A Meltzer
  3. Asaf Gilboa
(2019)
A causal role for the precuneus in network-wide theta and gamma oscillatory activity during complex memory retrieval
eLife 8:e43114.
https://doi.org/10.7554/eLife.43114

Share this article

https://doi.org/10.7554/eLife.43114

Further reading

    1. Neuroscience
    Agnieszka Glica, Katarzyna Wasilewska ... Katarzyna Jednoróg
    Research Article

    The neural noise hypothesis of dyslexia posits an imbalance between excitatory and inhibitory (E/I) brain activity as an underlying mechanism of reading difficulties. This study provides the first direct test of this hypothesis using both electroencephalography (EEG) power spectrum measures in 120 Polish adolescents and young adults (60 with dyslexia, 60 controls) and glutamate (Glu) and gamma-aminobutyric acid (GABA) concentrations from magnetic resonance spectroscopy (MRS) at 7T MRI scanner in half of the sample. Our results, supported by Bayesian statistics, show no evidence of E/I balance differences between groups, challenging the hypothesis that cortical hyperexcitability underlies dyslexia. These findings suggest that alternative mechanisms must be explored and highlight the need for further research into the E/I balance and its role in neurodevelopmental disorders.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Silvia Galli, Marco Di Antonio
    Insight

    The buildup of knot-like RNA structures in brain cells may be the key to understanding how uncontrolled protein aggregation drives Alzheimer’s disease.