Structure of a bacterial ATP synthase

  1. Hui Guo
  2. Toshiharu Suzuki
  3. John L Rubinstein  Is a corresponding author
  1. The Hospital for Sick Children, Canada
  2. Tokyo Institute of Technology, Japan

Abstract

ATP synthases produce ATP from ADP and inorganic phosphate with energy from a transmembrane proton motive force. Bacterial ATP synthases have been studied extensively because they are the simplest form of the enzyme and because of the relative ease of genetic manipulation of these complexes. We expressed the Bacillus PS3 ATP synthase in Eschericia coli, purified it, and imaged it by cryo-EM, allowing us to build atomic models of the complex in three rotational states. The position of subunit e shows how it is able to inhibit ATP hydrolysis while allowing ATP synthesis. The architecture of the membrane region shows how the simple bacterial ATP synthase is able to perform the same core functions as the equivalent, but more complicated, mitochondrial complex. The structures reveal the path of transmembrane proton translocation and provide a model for understanding decades of biochemical analysis interrogating the roles of specific residues in the enzyme.

Data availability

CryoEM maps have been deposited in EMDB and atomic models in PDB.

The following data sets were generated
    1. Guo H
    2. Rubinstein JL
    (2018) Intact class 1
    Electron Microscopy Data Bank, EMD-9333.
    1. Guo H
    2. Rubinstein JL
    (2018) Intact class 2
    Electron Microscopy Data Bank, EMD-9334.
    1. Guo H
    2. Rubinstein JL
    (2018) Intact class 3
    Electron Microscopy Data Bank, EMD-9335.
    1. Guo H
    2. Rubinstein JL
    (2018) Focused Fo
    Electron Microscopy Data Bank, EMD-9327.

Article and author information

Author details

  1. Hui Guo

    Molecular Medicine, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Toshiharu Suzuki

    Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. John L Rubinstein

    Molecular Medicine, The Hospital for Sick Children, Toronto, Canada
    For correspondence
    john.rubinstein@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0566-2209

Funding

Canadian Institutes of Health Research (MOP 81294)

  • John L Rubinstein

Canada Research Chairs

  • John L Rubinstein

Japan Society for the Promotion of Science (JP18H02409)

  • Toshiharu Suzuki

Canada Foundation for Innovation

  • John L Rubinstein

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard M Berry, University of Oxford, United Kingdom

Publication history

  1. Received: October 26, 2018
  2. Accepted: February 2, 2019
  3. Accepted Manuscript published: February 6, 2019 (version 1)
  4. Version of Record published: February 15, 2019 (version 2)

Copyright

© 2019, Guo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 21,414
    Page views
  • 1,456
    Downloads
  • 68
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hui Guo
  2. Toshiharu Suzuki
  3. John L Rubinstein
(2019)
Structure of a bacterial ATP synthase
eLife 8:e43128.
https://doi.org/10.7554/eLife.43128
  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    Eugene Serebryany et al.
    Research Article Updated

    Cataract is one of the most prevalent protein aggregation disorders and still the most common cause of vision loss worldwide. The metabolically quiescent core region of the human lens lacks cellular or protein turnover; it has therefore evolved remarkable mechanisms to resist light-scattering protein aggregation for a lifetime. We now report that one such mechanism involves an unusually abundant lens metabolite, myo-inositol, suppressing aggregation of lens crystallins. We quantified aggregation suppression using our previously well-characterized in vitro aggregation assays of oxidation-mimicking human γD-crystallin variants and investigated myo-inositol’s molecular mechanism of action using solution NMR, negative-stain TEM, differential scanning fluorometry, thermal scanning Raman spectroscopy, turbidimetry in redox buffers, and free thiol quantitation. Unlike many known chemical chaperones, myo-inositol’s primary target was not the native, unfolded, or final aggregated states of the protein; rather, we propose that it was the rate-limiting bimolecular step on the aggregation pathway. Given recent metabolomic evidence that it is severely depleted in human cataractous lenses compared to age-matched controls, we suggest that maintaining or restoring healthy levels of myo-inositol in the lens may be a simple, safe, and globally accessible strategy to prevent or delay lens opacification due to age-onset cataract.

    1. Biochemistry and Chemical Biology
    Makenna M Morck et al.
    Research Article

    Mutations in the lever arm of β-cardiac myosin are a frequent cause of hypertrophic cardiomyopathy, a disease characterized by hypercontractility and eventual hypertrophy of the left ventricle. Here, we studied five such mutations: three in the pliant region of the lever arm (D778V, L781P, and S782N) and two in the light chain-binding region (A797T and F834L). We investigated their effects on both motor function and myosin subfragment 2 (S2) tail-based autoinhibition. The pliant region mutations had varying effects on the motor function of a myosin construct lacking the S2 tail: overall, D778V increased power output, L781P reduced power output, and S782N had little effect on power output, while all three reduced the external force sensitivity of the actin detachment rate. With a myosin containing the motor domain and the proximal S2 tail, the pliant region mutations also attenuated autoinhibition in the presence of filamentous actin but had no impact in the absence of actin. By contrast, the light chain-binding region mutations had little effect on motor activity but produced marked reductions in autoinhibition in both the presence and absence of actin. Thus, mutations in the lever arm of β-cardiac myosin have divergent allosteric effects on myosin function, depending on whether they are in the pliant or light chain-binding regions.