Structure of a bacterial ATP synthase

  1. Hui Guo
  2. Toshiharu Suzuki
  3. John L Rubinstein  Is a corresponding author
  1. The Hospital for Sick Children, Canada
  2. Tokyo Institute of Technology, Japan

Abstract

ATP synthases produce ATP from ADP and inorganic phosphate with energy from a transmembrane proton motive force. Bacterial ATP synthases have been studied extensively because they are the simplest form of the enzyme and because of the relative ease of genetic manipulation of these complexes. We expressed the Bacillus PS3 ATP synthase in Eschericia coli, purified it, and imaged it by cryo-EM, allowing us to build atomic models of the complex in three rotational states. The position of subunit e shows how it is able to inhibit ATP hydrolysis while allowing ATP synthesis. The architecture of the membrane region shows how the simple bacterial ATP synthase is able to perform the same core functions as the equivalent, but more complicated, mitochondrial complex. The structures reveal the path of transmembrane proton translocation and provide a model for understanding decades of biochemical analysis interrogating the roles of specific residues in the enzyme.

Data availability

CryoEM maps have been deposited in EMDB and atomic models in PDB.

The following data sets were generated
    1. Guo H
    2. Rubinstein JL
    (2018) Intact class 1
    Electron Microscopy Data Bank, EMD-9333.
    1. Guo H
    2. Rubinstein JL
    (2018) Intact class 2
    Electron Microscopy Data Bank, EMD-9334.
    1. Guo H
    2. Rubinstein JL
    (2018) Intact class 3
    Electron Microscopy Data Bank, EMD-9335.
    1. Guo H
    2. Rubinstein JL
    (2018) Focused Fo
    Electron Microscopy Data Bank, EMD-9327.

Article and author information

Author details

  1. Hui Guo

    Molecular Medicine, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Toshiharu Suzuki

    Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. John L Rubinstein

    Molecular Medicine, The Hospital for Sick Children, Toronto, Canada
    For correspondence
    john.rubinstein@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0566-2209

Funding

Canadian Institutes of Health Research (MOP 81294)

  • John L Rubinstein

Canada Research Chairs

  • John L Rubinstein

Japan Society for the Promotion of Science (JP18H02409)

  • Toshiharu Suzuki

Canada Foundation for Innovation

  • John L Rubinstein

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard M Berry, University of Oxford, United Kingdom

Publication history

  1. Received: October 26, 2018
  2. Accepted: February 2, 2019
  3. Accepted Manuscript published: February 6, 2019 (version 1)
  4. Version of Record published: February 15, 2019 (version 2)

Copyright

© 2019, Guo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 24,130
    Page views
  • 1,594
    Downloads
  • 90
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hui Guo
  2. Toshiharu Suzuki
  3. John L Rubinstein
(2019)
Structure of a bacterial ATP synthase
eLife 8:e43128.
https://doi.org/10.7554/eLife.43128

Further reading

    1. Biochemistry and Chemical Biology
    2. Developmental Biology
    Zengdi Zhang, Zan Huang ... Hai-Bin Ruan
    Research Article Updated

    In mammals, interactions between the bone marrow (BM) stroma and hematopoietic progenitors contribute to bone-BM homeostasis. Perinatal bone growth and ossification provide a microenvironment for the transition to definitive hematopoiesis; however, mechanisms and interactions orchestrating the development of skeletal and hematopoietic systems remain largely unknown. Here, we establish intracellular O-linked β-N-acetylglucosamine (O-GlcNAc) modification as a posttranslational switch that dictates the differentiation fate and niche function of early BM stromal cells (BMSCs). By modifying and activating RUNX2, O-GlcNAcylation promotes osteogenic differentiation of BMSCs and stromal IL-7 expression to support lymphopoiesis. In contrast, C/EBPβ-dependent marrow adipogenesis and expression of myelopoietic stem cell factor (SCF) is inhibited by O-GlcNAcylation. Ablating O-GlcNAc transferase (OGT) in BMSCs leads to impaired bone formation, increased marrow adiposity, as well as defective B-cell lymphopoiesis and myeloid overproduction in mice. Thus, the balance of osteogenic and adipogenic differentiation of BMSCs is determined by reciprocal O-GlcNAc regulation of transcription factors, which simultaneously shapes the hematopoietic niche.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Hilary Scott, Boris Novikov ... Vladislav Panin
    Research Article

    Modification by sialylated glycans can affect protein functions, underlying mechanisms that control animal development and physiology. Sialylation relies on a dedicated pathway involving evolutionarily conserved enzymes, including CMP-sialic acid synthetase (CSAS) and sialyltransferase (SiaT) that mediate the activation of sialic acid and its transfer onto glycan termini, respectively. In Drosophila, CSAS and DSiaT genes function in the nervous system, affecting neural transmission and excitability. We found that these genes function in different cells: the function of CSAS is restricted to glia, while DSiaT functions in neurons. This partition of the sialylation pathway allows for regulation of neural functions via a glia-mediated control of neural sialylation. The sialylation genes were shown to be required for tolerance to heat and oxidative stress and for maintenance of the normal level of voltage-gated sodium channels. Our results uncovered a unique bipartite sialylation pathway that mediates glia-neuron coupling and regulates neural excitability and stress tolerance.