1. Biochemistry and Chemical Biology
  2. Structural Biology and Molecular Biophysics
Download icon

Structure of a bacterial ATP synthase

  1. Hui Guo
  2. Toshiharu Suzuki
  3. John L Rubinstein  Is a corresponding author
  1. The Hospital for Sick Children, Canada
  2. Tokyo Institute of Technology, Japan
Research Article
  • Cited 49
  • Views 17,985
  • Annotations
Cite this article as: eLife 2019;8:e43128 doi: 10.7554/eLife.43128

Abstract

ATP synthases produce ATP from ADP and inorganic phosphate with energy from a transmembrane proton motive force. Bacterial ATP synthases have been studied extensively because they are the simplest form of the enzyme and because of the relative ease of genetic manipulation of these complexes. We expressed the Bacillus PS3 ATP synthase in Eschericia coli, purified it, and imaged it by cryo-EM, allowing us to build atomic models of the complex in three rotational states. The position of subunit e shows how it is able to inhibit ATP hydrolysis while allowing ATP synthesis. The architecture of the membrane region shows how the simple bacterial ATP synthase is able to perform the same core functions as the equivalent, but more complicated, mitochondrial complex. The structures reveal the path of transmembrane proton translocation and provide a model for understanding decades of biochemical analysis interrogating the roles of specific residues in the enzyme.

Data availability

CryoEM maps have been deposited in EMDB and atomic models in PDB.

The following data sets were generated
    1. Guo H
    2. Rubinstein JL
    (2018) Intact class 1
    Electron Microscopy Data Bank, EMD-9333.
    1. Guo H
    2. Rubinstein JL
    (2018) Intact class 2
    Electron Microscopy Data Bank, EMD-9334.
    1. Guo H
    2. Rubinstein JL
    (2018) Intact class 3
    Electron Microscopy Data Bank, EMD-9335.
    1. Guo H
    2. Rubinstein JL
    (2018) Focused Fo
    Electron Microscopy Data Bank, EMD-9327.

Article and author information

Author details

  1. Hui Guo

    Molecular Medicine, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Toshiharu Suzuki

    Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. John L Rubinstein

    Molecular Medicine, The Hospital for Sick Children, Toronto, Canada
    For correspondence
    john.rubinstein@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0566-2209

Funding

Canadian Institutes of Health Research (MOP 81294)

  • John L Rubinstein

Canada Research Chairs

  • John L Rubinstein

Japan Society for the Promotion of Science (JP18H02409)

  • Toshiharu Suzuki

Canada Foundation for Innovation

  • John L Rubinstein

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard M Berry, University of Oxford, United Kingdom

Publication history

  1. Received: October 26, 2018
  2. Accepted: February 2, 2019
  3. Accepted Manuscript published: February 6, 2019 (version 1)
  4. Version of Record published: February 15, 2019 (version 2)

Copyright

© 2019, Guo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 17,985
    Page views
  • 1,306
    Downloads
  • 49
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    Xavier Portillo et al.
    Research Article Updated

    An RNA polymerase ribozyme that has been the subject of extensive directed evolution efforts has attained the ability to synthesize complex functional RNAs, including a full-length copy of its own evolutionary ancestor. During the course of evolution, the catalytic core of the ribozyme has undergone a major structural rearrangement, resulting in a novel tertiary structural element that lies in close proximity to the active site. Through a combination of site-directed mutagenesis, structural probing, and deep sequencing analysis, the trajectory of evolution was seen to involve the progressive stabilization of the new structure, which provides the basis for improved catalytic activity of the ribozyme. Multiple paths to the new structure were explored by the evolving population, converging upon a common solution. Tertiary structural remodeling of RNA is known to occur in nature, as evidenced by the phylogenetic analysis of extant organisms, but this type of structural innovation had not previously been observed in an experimental setting. Despite prior speculation that the catalytic core of the ribozyme had become trapped in a narrow local fitness optimum, the evolving population has broken through to a new fitness locale, raising the possibility that further improvement of polymerase activity may be achievable.

    1. Biochemistry and Chemical Biology
    Gajanan S Patil et al.
    Research Article Updated

    Fatty acyl-AMP ligases (FAALs) channelize fatty acids towards biosynthesis of virulent lipids in mycobacteria and other pharmaceutically or ecologically important polyketides and lipopeptides in other microbes. They do so by bypassing the ubiquitous coenzyme A-dependent activation and rely on the acyl carrier protein-tethered 4′-phosphopantetheine (holo-ACP). The molecular basis of how FAALs strictly reject chemically identical and abundant acceptors like coenzyme A (CoA) and accept holo-ACP unlike other members of the ANL superfamily remains elusive. We show that FAALs have plugged the promiscuous canonical CoA-binding pockets and utilize highly selective alternative binding sites. These alternative pockets can distinguish adenosine 3′,5′-bisphosphate-containing CoA from holo-ACP and thus FAALs can distinguish between CoA and holo-ACP. These exclusive features helped identify the omnipresence of FAAL-like proteins and their emergence in plants, fungi, and animals with unconventional domain organizations. The universal distribution of FAALs suggests that they are parallelly evolved with FACLs for ensuring a CoA-independent activation and redirection of fatty acids towards lipidic metabolites.