Associations between sounds and actions in early auditory cortex of nonhuman primates

  1. Ying Huang  Is a corresponding author
  2. Peter Heil
  3. Michael Brosch
  1. Leibniz Institute for Neurobiology, Germany

Abstract

An individual may need to take different actions to the same stimulus in different situations to achieve a given goal. The selection of the appropriate action hinges on the previously learned associations between stimuli, actions, and outcomes in the situations. Here, using a go/no-go paradigm and a symmetrical reward, we show that early auditory cortex of nonhuman primates represents such associations, in both the spiking activity and the local field potentials. Sound-evoked neuronal responses changed with sensorimotor associations shortly after sound onset, and the neuronal responses were largest when the sound signaled that a no-go response was required in a trial to obtain a reward. Our findings suggest that the association process takes place in the auditory system and does not necessarily rely on association cortex. Thus, auditory cortex may contribute to a rapid selection of the appropriate motor responses to sounds during goal-directed behavior.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Ying Huang

    Special Lab Primate Neurobiology, Leibniz Institute for Neurobiology, Magdeburg, Germany
    For correspondence
    Ying.Huang@lin-magdeburg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6471-8009
  2. Peter Heil

    Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7861-5927
  3. Michael Brosch

    Special Lab Primate Neurobiology, Leibniz Institute for Neurobiology, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

European Regional Development Fund (CBBS neuronetwork)

  • Ying Huang

Deutsche Forschungsgemeinschaft (He 1721/10-1)

  • Michael Brosch

Deutsche Forschungsgemeinschaft (He 1721/10-1)

  • Peter Heil

LIN Special Project (LIN special project)

  • Michael Brosch

LIN Special Project (LIN special project)

  • Peter Heil

Deutsche Forschungsgemeinschaft (He 1721/10-2)

  • Michael Brosch

Deutsche Forschungsgemeinschaft (He 1721/10-2)

  • Peter Heil

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bruno B Averbeck, NIH/NIMH, United States

Ethics

Animal experimentation: The experiments in this study were approved by the authority for animal care and ethics of the federal state of Saxony-Anhalt (No. 28-42502-2-1129IfN), and conformed to the rules for animal experimentation of the European Community Council Directive (86/609/EEC).

Version history

  1. Received: October 31, 2018
  2. Accepted: April 3, 2019
  3. Accepted Manuscript published: April 4, 2019 (version 1)
  4. Version of Record published: April 16, 2019 (version 2)

Copyright

© 2019, Huang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,414
    views
  • 248
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ying Huang
  2. Peter Heil
  3. Michael Brosch
(2019)
Associations between sounds and actions in early auditory cortex of nonhuman primates
eLife 8:e43281.
https://doi.org/10.7554/eLife.43281

Share this article

https://doi.org/10.7554/eLife.43281

Further reading

    1. Neuroscience
    Ya-Hui Lin, Li-Wen Wang ... Li-An Chu
    Research Article

    Tissue-clearing and labeling techniques have revolutionized brain-wide imaging and analysis, yet their application to clinical formalin-fixed paraffin-embedded (FFPE) blocks remains challenging. We introduce HIF-Clear, a novel method for efficiently clearing and labeling centimeter-thick FFPE specimens using elevated temperature and concentrated detergents. HIF-Clear with multi-round immunolabeling reveals neuron circuitry regulating multiple neurotransmitter systems in a whole FFPE mouse brain and is able to be used as the evaluation of disease treatment efficiency. HIF-Clear also supports expansion microscopy and can be performed on a non-sectioned 15-year-old FFPE specimen, as well as a 3-month formalin-fixed mouse brain. Thus, HIF-Clear represents a feasible approach for researching archived FFPE specimens for future neuroscientific and 3D neuropathological analyses.

    1. Neuroscience
    Amanda Chu, Nicholas T Gordon ... Michael A McDannald
    Research Article

    Pavlovian fear conditioning has been extensively used to study the behavioral and neural basis of defensive systems. In a typical procedure, a cue is paired with foot shock, and subsequent cue presentation elicits freezing, a behavior theoretically linked to predator detection. Studies have since shown a fear conditioned cue can elicit locomotion, a behavior that - in addition to jumping, and rearing - is theoretically linked to imminent or occurring predation. A criticism of studies observing fear conditioned cue-elicited locomotion is that responding is non-associative. We gave rats Pavlovian fear discrimination over a baseline of reward seeking. TTL-triggered cameras captured 5 behavior frames/s around cue presentation. Experiment 1 examined the emergence of danger-specific behaviors over fear acquisition. Experiment 2 examined the expression of danger-specific behaviors in fear extinction. In total, we scored 112,000 frames for nine discrete behavior categories. Temporal ethograms show that during acquisition, a fear conditioned cue suppresses reward seeking and elicits freezing, but also elicits locomotion, jumping, and rearing - all of which are maximal when foot shock is imminent. During extinction, a fear conditioned cue most prominently suppresses reward seeking, and elicits locomotion that is timed to shock delivery. The independent expression of these behaviors in both experiments reveal a fear conditioned cue to orchestrate a temporally organized suite of behaviors.