Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors

Abstract

Reactive oxygen species (ROS)-dependent signaling pathways from chloroplasts and mitochondria merge at the nuclear protein RADICAL-INDUCED CELL DEATH1 (RCD1). RCD1 interacts in vivo and suppresses the activity of the transcription factors ANAC013 and ANAC017, which mediate a ROS-related retrograde signal originating from mitochondrial complex III. Inactivation of RCD1 leads to increased expression of mitochondrial dysfunction stimulon (MDS) genes regulated by ANAC013 and ANAC017. Accumulating MDS gene products, including alternative oxidases (AOXs), affect redox status of the chloroplasts, leading to changes in chloroplast ROS processing and increased protection of photosynthetic apparatus. ROS alter the abundance, thiol redox state and oligomerization of the RCD1 protein in vivo, providing feedback control on its function. RCD1-dependent regulation is linked to chloroplast signaling by 3'-phosphoadenosine 5'-phosphate (PAP). Thus, RCD1 integrates organellar signaling from chloroplasts and mitochondria to establish transcriptional control over the metabolic processes in both organelles.

Data availability

The atomic coordinates and structural restraints for the C-terminal domain of RCD1 have been deposited in the Protein Data Bank with the accession code 5N9Q.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Alexey Shapiguzov

    Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7199-1882
  2. Julia P Vainonen

    Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  3. Kerri Hunter

    Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2285-6999
  4. Helena Tossavainen

    Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  5. Arjun Tiwari

    Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
    Competing interests
    The authors declare that no competing interests exist.
  6. Sari Järvi

    Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
    Competing interests
    The authors declare that no competing interests exist.
  7. Maarit Hellman

    Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
    Competing interests
    The authors declare that no competing interests exist.
  8. Fayezeh Aarabi

    Max-Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Saleh Alseekh

    Max-Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2067-5235
  10. Brecht Wybouw

    Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8783-4646
  11. Katrien Van Der Kelen

    Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  12. Lauri Nikkanen

    Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
    Competing interests
    The authors declare that no competing interests exist.
  13. Julia Krasensky-Wrzaczek

    Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5989-9984
  14. Nina Sipari

    Viikki Metabolomics Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  15. Markku Keinänen

    Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
    Competing interests
    The authors declare that no competing interests exist.
  16. Esa Tyystjärvi

    Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
    Competing interests
    The authors declare that no competing interests exist.
  17. Eevi Rintamäki

    Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
    Competing interests
    The authors declare that no competing interests exist.
  18. Bert De Rybel

    Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9551-042X
  19. Jarkko Salojärvi

    Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4096-6278
  20. Frank van Breusegem

    Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  21. Alisdair R Fernie

    Max-Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  22. Mikael Brosché

    Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  23. Perttu Permi

    Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  24. Eva-Mari Aro

    Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
    Competing interests
    The authors declare that no competing interests exist.
  25. Michael Wrzaczek

    Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5946-9060
  26. Jaakko Kangasjarvi

    Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
    For correspondence
    Jaakko.Kangasjarvi@helsinki.fi
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8959-1809

Funding

Helsingin Yliopisto

  • Jaakko Kangasjarvi

Suomen Akatemia

  • Jarkko Salojärvi
  • Eva-Mari Aro
  • Michael Wrzaczek
  • Jaakko Kangasjarvi

Fonds Wetenschappelijk Onderzoek

  • Brecht Wybouw
  • Bert De Rybel
  • Frank van Breusegem

Deutsche Forschungsgemeinschaft

  • Fayezeh Aarabi
  • Alisdair R Fernie

Horizon 2020 Framework Programme

  • Saleh Alseekh
  • Alisdair R Fernie

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christian S Hardtke, University of Lausanne, Switzerland

Version history

  1. Received: November 8, 2018
  2. Accepted: February 14, 2019
  3. Accepted Manuscript published: February 15, 2019 (version 1)
  4. Version of Record published: March 12, 2019 (version 2)

Copyright

© 2019, Shapiguzov et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,348
    Page views
  • 1,152
    Downloads
  • 99
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexey Shapiguzov
  2. Julia P Vainonen
  3. Kerri Hunter
  4. Helena Tossavainen
  5. Arjun Tiwari
  6. Sari Järvi
  7. Maarit Hellman
  8. Fayezeh Aarabi
  9. Saleh Alseekh
  10. Brecht Wybouw
  11. Katrien Van Der Kelen
  12. Lauri Nikkanen
  13. Julia Krasensky-Wrzaczek
  14. Nina Sipari
  15. Markku Keinänen
  16. Esa Tyystjärvi
  17. Eevi Rintamäki
  18. Bert De Rybel
  19. Jarkko Salojärvi
  20. Frank van Breusegem
  21. Alisdair R Fernie
  22. Mikael Brosché
  23. Perttu Permi
  24. Eva-Mari Aro
  25. Michael Wrzaczek
  26. Jaakko Kangasjarvi
(2019)
Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors
eLife 8:e43284.
https://doi.org/10.7554/eLife.43284

Further reading

    1. Microbiology and Infectious Disease
    2. Plant Biology
    Christopher Kesten, Valentin Leitner ... Clara Sanchez-Rodriguez
    Research Article

    Purinergic signaling activated by extracellular nucleotides and their derivative nucleosides trigger sophisticated signaling networks. The outcome of these pathways determine the capacity of the organism to survive under challenging conditions. Both extracellular ATP (eATP) and Adenosine (eAdo) act as primary messengers in mammals, essential for immunosuppressive responses. Despite the clear role of eATP as a plant damage-associated molecular pattern, the function of its nucleoside, eAdo, and of the eAdo/eATP balance in plant stress response remain to be fully elucidated. This is particularly relevant in the context of plant-microbe interaction, where the intruder manipulates the extracellular matrix. Here, we identify Ado as a main molecule secreted by the vascular fungus Fusarium oxysporum. We show that eAdo modulates the plant's susceptibility to fungal colonization by altering the eATP-mediated apoplastic pH homeostasis, an essential physiological player during the infection of this pathogen. Our work indicates that plant pathogens actively imbalance the apoplastic eAdo/eATP levels as a virulence mechanism.

    1. Plant Biology
    2. Structural Biology and Molecular Biophysics
    Jinping Lu, Ingo Dreyer ... Rainer Hedrich
    Research Article

    To fire action-potential-like electrical signals, the vacuole membrane requires the two-pore channel TPC1, formerly called SV channel. The TPC1/SV channel functions as a depolarization-stimulated, non-selective cation channel that is inhibited by luminal Ca2+. In our search for species-dependent functional TPC1 channel variants with different luminal Ca2+ sensitivity, we found in total three acidic residues present in Ca2+ sensor sites 2 and 3 of the Ca2+-sensitive AtTPC1 channel from Arabidopsis thaliana that were neutral in its Vicia faba ortholog and also in those of many other Fabaceae. When expressed in the Arabidopsis AtTPC1-loss-of-function background, wild-type VfTPC1 was hypersensitive to vacuole depolarization and only weakly sensitive to blocking luminal Ca2+. When AtTPC1 was mutated for these VfTPC1-homologous polymorphic residues, two neutral substitutions in Ca2+ sensor site 3 alone were already sufficient for the Arabidopsis At-VfTPC1 channel mutant to gain VfTPC1-like voltage and luminal Ca2+ sensitivity that together rendered vacuoles hyperexcitable. Thus, natural TPC1 channel variants exist in plant families which may fine-tune vacuole excitability and adapt it to environmental settings of the particular ecological niche.