Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors

  1. Alexey Shapiguzov
  2. Julia P Vainonen
  3. Kerri Hunter
  4. Helena Tossavainen
  5. Arjun Tiwari
  6. Sari Järvi
  7. Maarit Hellman
  8. Fayezeh Aarabi
  9. Saleh Alseekh
  10. Brecht Wybouw
  11. Katrien Van Der Kelen
  12. Lauri Nikkanen
  13. Julia Krasensky-Wrzaczek
  14. Nina Sipari
  15. Markku Keinänen
  16. Esa Tyystjärvi
  17. Eevi Rintamäki
  18. Bert De Rybel
  19. Jarkko Salojärvi
  20. Frank van Breusegem
  21. Alisdair R Fernie
  22. Mikael Brosché
  23. Perttu Permi
  24. Eva-Mari Aro
  25. Michael Wrzaczek
  26. Jaakko Kangasjarvi  Is a corresponding author
  1. University of Helsinki, Finland
  2. University of Turku, Finland
  3. University of Jyväskylä, Finland
  4. Max-Planck Institute for Molecular Plant Physiology, Germany
  5. Ghent University, Belgium
  6. University of Eastern Finland, Finland

Abstract

Reactive oxygen species (ROS)-dependent signaling pathways from chloroplasts and mitochondria merge at the nuclear protein RADICAL-INDUCED CELL DEATH1 (RCD1). RCD1 interacts in vivo and suppresses the activity of the transcription factors ANAC013 and ANAC017, which mediate a ROS-related retrograde signal originating from mitochondrial complex III. Inactivation of RCD1 leads to increased expression of mitochondrial dysfunction stimulon (MDS) genes regulated by ANAC013 and ANAC017. Accumulating MDS gene products, including alternative oxidases (AOXs), affect redox status of the chloroplasts, leading to changes in chloroplast ROS processing and increased protection of photosynthetic apparatus. ROS alter the abundance, thiol redox state and oligomerization of the RCD1 protein in vivo, providing feedback control on its function. RCD1-dependent regulation is linked to chloroplast signaling by 3'-phosphoadenosine 5'-phosphate (PAP). Thus, RCD1 integrates organellar signaling from chloroplasts and mitochondria to establish transcriptional control over the metabolic processes in both organelles.

Data availability

The atomic coordinates and structural restraints for the C-terminal domain of RCD1 have been deposited in the Protein Data Bank with the accession code 5N9Q.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Alexey Shapiguzov

    Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7199-1882
  2. Julia P Vainonen

    Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  3. Kerri Hunter

    Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2285-6999
  4. Helena Tossavainen

    Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  5. Arjun Tiwari

    Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
    Competing interests
    The authors declare that no competing interests exist.
  6. Sari Järvi

    Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
    Competing interests
    The authors declare that no competing interests exist.
  7. Maarit Hellman

    Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
    Competing interests
    The authors declare that no competing interests exist.
  8. Fayezeh Aarabi

    Max-Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Saleh Alseekh

    Max-Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2067-5235
  10. Brecht Wybouw

    Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8783-4646
  11. Katrien Van Der Kelen

    Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  12. Lauri Nikkanen

    Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
    Competing interests
    The authors declare that no competing interests exist.
  13. Julia Krasensky-Wrzaczek

    Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5989-9984
  14. Nina Sipari

    Viikki Metabolomics Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  15. Markku Keinänen

    Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
    Competing interests
    The authors declare that no competing interests exist.
  16. Esa Tyystjärvi

    Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
    Competing interests
    The authors declare that no competing interests exist.
  17. Eevi Rintamäki

    Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
    Competing interests
    The authors declare that no competing interests exist.
  18. Bert De Rybel

    Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9551-042X
  19. Jarkko Salojärvi

    Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4096-6278
  20. Frank van Breusegem

    Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  21. Alisdair R Fernie

    Max-Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  22. Mikael Brosché

    Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  23. Perttu Permi

    Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  24. Eva-Mari Aro

    Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
    Competing interests
    The authors declare that no competing interests exist.
  25. Michael Wrzaczek

    Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5946-9060
  26. Jaakko Kangasjarvi

    Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
    For correspondence
    Jaakko.Kangasjarvi@helsinki.fi
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8959-1809

Funding

Helsingin Yliopisto

  • Jaakko Kangasjarvi

Suomen Akatemia

  • Jarkko Salojärvi
  • Eva-Mari Aro
  • Michael Wrzaczek
  • Jaakko Kangasjarvi

Fonds Wetenschappelijk Onderzoek

  • Brecht Wybouw
  • Bert De Rybel
  • Frank van Breusegem

Deutsche Forschungsgemeinschaft

  • Fayezeh Aarabi
  • Alisdair R Fernie

Horizon 2020 Framework Programme

  • Saleh Alseekh
  • Alisdair R Fernie

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christian S Hardtke, University of Lausanne, Switzerland

Publication history

  1. Received: November 8, 2018
  2. Accepted: February 14, 2019
  3. Accepted Manuscript published: February 15, 2019 (version 1)
  4. Version of Record published: March 12, 2019 (version 2)

Copyright

© 2019, Shapiguzov et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,044
    Page views
  • 1,116
    Downloads
  • 90
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexey Shapiguzov
  2. Julia P Vainonen
  3. Kerri Hunter
  4. Helena Tossavainen
  5. Arjun Tiwari
  6. Sari Järvi
  7. Maarit Hellman
  8. Fayezeh Aarabi
  9. Saleh Alseekh
  10. Brecht Wybouw
  11. Katrien Van Der Kelen
  12. Lauri Nikkanen
  13. Julia Krasensky-Wrzaczek
  14. Nina Sipari
  15. Markku Keinänen
  16. Esa Tyystjärvi
  17. Eevi Rintamäki
  18. Bert De Rybel
  19. Jarkko Salojärvi
  20. Frank van Breusegem
  21. Alisdair R Fernie
  22. Mikael Brosché
  23. Perttu Permi
  24. Eva-Mari Aro
  25. Michael Wrzaczek
  26. Jaakko Kangasjarvi
(2019)
Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors
eLife 8:e43284.
https://doi.org/10.7554/eLife.43284

Further reading

    1. Plant Biology
    Josephine HR Maidment, Motoki Shimizu ... Mark J Banfield
    Research Article

    A subset of plant intracellular NLR immune receptors detect effector proteins, secreted by phytopathogens to promote infection, through unconventional integrated domains which resemble the effector’s host targets. Direct binding of effectors to these integrated domains activates plant defenses. The rice NLR receptor Pik-1 binds the Magnaporthe oryzae effector AVR-Pik through an integrated heavy metal-associated (HMA) domain. However, the stealthy alleles AVR-PikC and AVR-PikF avoid interaction with Pik-HMA and evade host defenses. Here, we exploited knowledge of the biochemical interactions between AVR-Pik and its host target, OsHIPP19, to engineer novel Pik-1 variants that respond to AVR-PikC/F. First, we exchanged the HMA domain of Pikp-1 for OsHIPP19-HMA, demonstrating that effector targets can be incorporated into NLR receptors to provide novel recognition profiles. Second, we used the structure of OsHIPP19-HMA to guide the mutagenesis of Pikp-HMA to expand its recognition profile. We demonstrate that the extended recognition profiles of engineered Pikp-1 variants correlate with effector binding in planta and in vitro, and with the gain of new contacts across the effector/HMA interface. Crucially, transgenic rice producing the engineered Pikp-1 variants was resistant to blast fungus isolates carrying AVR-PikC or AVR-PikF. These results demonstrate that effector target-guided engineering of NLR receptors can provide new-to-nature disease resistance in crops.

    1. Cell Biology
    2. Plant Biology
    Han Nim Lee, Jenu Varghese Chacko ... Marisa S Otegui
    Research Article Updated

    The ubiquitin-binding NBR1 autophagy receptor plays a prominent role in recognizing ubiquitylated protein aggregates for vacuolar degradation by macroautophagy. Here, we show that upon exposing Arabidopsis plants to intense light, NBR1 associates with photodamaged chloroplasts independently of ATG7, a core component of the canonical autophagy machinery. NBR1 coats both the surface and interior of chloroplasts, which is then followed by direct engulfment of the organelles into the central vacuole via a microautophagy-type process. The relocalization of NBR1 into chloroplasts does not require the chloroplast translocon complexes embedded in the envelope but is instead greatly enhanced by removing the self-oligomerization mPB1 domain of NBR1. The delivery of NBR1-decorated chloroplasts into vacuoles depends on the ubiquitin-binding UBA2 domain of NBR1 but is independent of the ubiquitin E3 ligases SP1 and PUB4, known to direct the ubiquitylation of chloroplast surface proteins. Compared to wild-type plants, nbr1 mutants have altered levels of a subset of chloroplast proteins and display abnormal chloroplast density and sizes upon high light exposure. We postulate that, as photodamaged chloroplasts lose envelope integrity, cytosolic ligases reach the chloroplast interior to ubiquitylate thylakoid and stroma proteins which are then recognized by NBR1 for autophagic clearance. This study uncovers a new function of NBR1 in the degradation of damaged chloroplasts by microautophagy.