The Plasmodium Liver-Specific Protein 2 (LISP2) is an early marker of liver stage development

  1. Devendra Kumar Gupta
  2. Laurent Dembele
  3. Annemarie Voorberg-van der Wel
  4. Guglielmo Roma
  5. Andy Yip
  6. Vorada Chuenchob
  7. Niwat Kangwanrangsan
  8. Tomoko Ishino
  9. Ashley M Vaughan
  10. Stefan HI Kappe
  11. Erika L Flannery
  12. Jetsumon Sattabongkot
  13. Sebastian A Mikolajczak
  14. Pablo Bifani
  15. Clemens H M Kocken
  16. Thierry Tidiane Diagana  Is a corresponding author
  1. Novartis Institute for Tropical Diseases, United States
  2. Université des Sciences, des Techniques et des Technologies de Bamako, Mali
  3. Biomedical Primate Research Centre, Netherlands
  4. Novartis Institutes for BioMedical Research, Switzerland
  5. Novartis Institute for Tropical Diseases, Singapore
  6. Center for Infectious Disease Research, United States
  7. Mahidol University, Thailand
  8. Ehime University, Japan

Abstract

Plasmodium vivax hypnozoites persist in the liver, cause malaria relapse and represent a major challenge to malaria elimination. Our previous transcriptomic study provided a novel molecular framework to enhance our understanding of the hypnozoite biology (Voorberg-van der Wel A, et al., 2017). In this dataset, we identified and characterized the Liver-Specific Protein 2 (LISP2) protein as an early molecular marker of liver stage development. Immunofluorescence analysis of hepatocytes infected with relapsing malaria parasites, in vitro (P. cynomolgi) and in vivo (P. vivax), reveals that LISP2 expression discriminates between dormant hypnozoites and early developing parasites. We further demonstrate that prophylactic drugs selectively kill all LISP2 positive parasites, while LISP2 negative hypnozoites are only sensitive to anti-relapse drug tafenoquine. Our results provide novel biological insights in the initiation of liver stage schizogony and an early marker suitable for the development of drug discovery assays predictive of anti-relapse activity.

Data availability

All data generated during the study are submitted as supplementary source files.

The following previously published data sets were used

Article and author information

Author details

  1. Devendra Kumar Gupta

    Novartis Institute for Tropical Diseases, Emeryville, United States
    Competing interests
    Devendra Kumar Gupta, is employed by and/or shareholder of Novartis Pharma AG.
  2. Laurent Dembele

    Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
    Competing interests
    No competing interests declared.
  3. Annemarie Voorberg-van der Wel

    Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9403-0515
  4. Guglielmo Roma

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
    Competing interests
    Guglielmo Roma, is employed by and/or shareholder of Novartis Pharma AG.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8020-4219
  5. Andy Yip

    Novartis Institute for Tropical Diseases, Singapore, Singapore
    Competing interests
    Andy Yip, is employed by and/or shareholder of Novartis Pharma AG.
  6. Vorada Chuenchob

    Center for Infectious Disease Research, Seattle, United States
    Competing interests
    No competing interests declared.
  7. Niwat Kangwanrangsan

    Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  8. Tomoko Ishino

    Ehime University, Ehime, Japan
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2466-711X
  9. Ashley M Vaughan

    Center for Infectious Disease Research, Seattle, United States
    Competing interests
    No competing interests declared.
  10. Stefan HI Kappe

    Center for Infectious Disease Research, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1540-1731
  11. Erika L Flannery

    Center for Infectious Disease Research, Seattle, United States
    Competing interests
    Erika L Flannery, is employed by and/or shareholder of Novartis Pharma AG.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0665-7954
  12. Jetsumon Sattabongkot

    Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3938-4588
  13. Sebastian A Mikolajczak

    Novartis Institute for Tropical Diseases, Emeryville, United States
    Competing interests
    Sebastian A Mikolajczak, is employed by and/or shareholder of Novartis Pharma AG.
  14. Pablo Bifani

    Novartis Institute for Tropical Diseases, Singapore, Singapore
    Competing interests
    Pablo Bifani, is employed by and/or shareholder of Novartis Pharma AG.
  15. Clemens H M Kocken

    Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
    Competing interests
    No competing interests declared.
  16. Thierry Tidiane Diagana

    Novartis Institute for Tropical Diseases, Emeryville, United States
    For correspondence
    thierry.diagana@novartis.com
    Competing interests
    Thierry Tidiane Diagana, is employed by and/or shareholder of Novartis Pharma AG..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8520-5683

Funding

Bill and Melinda Gates Foundation (OPP1141292)

  • Guglielmo Roma
  • Clemens H M Kocken
  • Thierry Tidiane Diagana

Bill and Melinda Gates Foundation (OPP1137694)

  • Sebastian A Mikolajczak

Funders have no role in the design of the study.

Reviewing Editor

  1. Urszula Krzych, Walter Reed Army Institute of Research, United States

Ethics

Animal experimentation: Ethics statement included in the method section of the manuscript.

Version history

  1. Received: November 9, 2018
  2. Accepted: May 13, 2019
  3. Accepted Manuscript published: May 16, 2019 (version 1)
  4. Version of Record published: May 30, 2019 (version 2)

Copyright

© 2019, Gupta et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,732
    views
  • 444
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Devendra Kumar Gupta
  2. Laurent Dembele
  3. Annemarie Voorberg-van der Wel
  4. Guglielmo Roma
  5. Andy Yip
  6. Vorada Chuenchob
  7. Niwat Kangwanrangsan
  8. Tomoko Ishino
  9. Ashley M Vaughan
  10. Stefan HI Kappe
  11. Erika L Flannery
  12. Jetsumon Sattabongkot
  13. Sebastian A Mikolajczak
  14. Pablo Bifani
  15. Clemens H M Kocken
  16. Thierry Tidiane Diagana
(2019)
The Plasmodium Liver-Specific Protein 2 (LISP2) is an early marker of liver stage development
eLife 8:e43362.
https://doi.org/10.7554/eLife.43362

Share this article

https://doi.org/10.7554/eLife.43362

Further reading

    1. Microbiology and Infectious Disease
    Edited by Olivier Silvie et al.
    Collection

    eLife has recently published a wide range of papers on malaria, covering a diversity of themes including parasite biology, epidemiology, immunology, drugs and vaccines.

    1. Microbiology and Infectious Disease
    2. Physics of Living Systems
    Chi Zhang, Rongjing Zhang, Junhua Yuan
    Research Article

    Bacteria in biofilms secrete potassium ions to attract free swimming cells. However, the basis of chemotaxis to potassium remains poorly understood. Here, using a microfluidic device, we found that Escherichia coli can rapidly accumulate in regions of high potassium concentration on the order of millimoles. Using a bead assay, we measured the dynamic response of individual flagellar motors to stepwise changes in potassium concentration, finding that the response resulted from the chemotaxis signaling pathway. To characterize the chemotactic response to potassium, we measured the dose–response curve and adaptation kinetics via an Förster resonance energy transfer (FRET) assay, finding that the chemotaxis pathway exhibited a sensitive response and fast adaptation to potassium. We further found that the two major chemoreceptors Tar and Tsr respond differently to potassium. Tar receptors exhibit a biphasic response, whereas Tsr receptors respond to potassium as an attractant. These different responses were consistent with the responses of the two receptors to intracellular pH changes. The sensitive response and fast adaptation allow bacteria to sense and localize small changes in potassium concentration. The differential responses of Tar and Tsr receptors to potassium suggest that cells at different growth stages respond differently to potassium and may have different requirements for potassium.