1. Neuroscience
Download icon

Disordered breathing in a mouse model of Dravet syndrome

  1. Fu-Shan Kuo
  2. Colin M Cleary
  3. Joseph L LoTurco
  4. Xinnian Chen
  5. Daniel K Mulkey  Is a corresponding author
  1. University of Connecticut, United States
Research Article
  • Cited 13
  • Views 2,030
  • Annotations
Cite this article as: eLife 2019;8:e43387 doi: 10.7554/eLife.43387

Abstract

Dravet syndrome (DS) is a form of epilepsy with a high incidence of sudden unexpected death in epilepsy (SUDEP). Respiratory failure is a leading cause of SUDEP, and DS patients' frequently exhibit disordered breathing. Despite this, mechanisms underlying respiratory dysfunction in DS are unknown. We found that mice expressing a DS-associated Scn1a missense mutation (A1783V) conditionally in inhibitory neurons (Slc32a1cre/+::Scn1aA1783V fl/+; defined as Scn1aΔE26) exhibit spontaneous seizures, die prematurely and present a respiratory phenotype including hypoventilation, apnea, and a diminished ventilatory response to CO2. At the cellular level in the retrotrapezoid nucleus (RTN), we found inhibitory neurons expressing the Scn1a A1783V variant are less excitable, whereas glutamatergic chemosensitive RTN neurons, which are a key source of the CO2/H+-dependent drive to breathe, are hyper-excitable in slices from Scn1aΔE26 mice. These results show loss of Scn1a function can disrupt respiratory control at the cellular and whole animal levels.

Data availability

We have included source data files for all summary figures that do not include individual data points.

Article and author information

Author details

  1. Fu-Shan Kuo

    Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Colin M Cleary

    Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joseph L LoTurco

    Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Xinnian Chen

    Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel K Mulkey

    Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
    For correspondence
    daniel.mulkey@uconn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7040-3927

Funding

National Institutes of Health (HL104101)

  • Daniel K Mulkey

Dravet Syndrome Foundation (AG180243)

  • Daniel K Mulkey

American Epilepsy Society

  • Fu-Shan Kuo

National Institutes of Health (NS104999)

  • Joseph L LoTurco

National Institutes of Health (HL142227)

  • Colin M Cleary

National Institutes of Health (HL137094)

  • Daniel K Mulkey

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal use was in accordance with guidelines approved by the University of Connecticut Institutional Animal Care and Use Committee. (Protocols A16-034 and A17-002).

Reviewing Editor

  1. Jan-Marino Ramirez, Seattle Children's Research Institute and University of Washington, United States

Publication history

  1. Received: November 5, 2018
  2. Accepted: April 25, 2019
  3. Accepted Manuscript published: April 26, 2019 (version 1)
  4. Version of Record published: May 8, 2019 (version 2)

Copyright

© 2019, Kuo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,030
    Page views
  • 313
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Romy Frömer et al.
    Research Article Updated

    Influential theories emphasize the importance of predictions in learning: we learn from feedback to the extent that it is surprising, and thus conveys new information. Here, we explore the hypothesis that surprise depends not only on comparing current events to past experience, but also on online evaluation of performance via internal monitoring. Specifically, we propose that people leverage insights from response-based performance monitoring – outcome predictions and confidence – to control learning from feedback. In line with predictions from a Bayesian inference model, we find that people who are better at calibrating their confidence to the precision of their outcome predictions learn more quickly. Further in line with our proposal, EEG signatures of feedback processing are sensitive to the accuracy of, and confidence in, post-response outcome predictions. Taken together, our results suggest that online predictions and confidence serve to calibrate neural error signals to improve the efficiency of learning.

    1. Neuroscience
    Jonas Hansen Kymre et al.
    Research Article

    The pheromone system of heliothine moths is an optimal model for studying principles underlying higher-order olfactory processing. In Helicoverpa armigera, three male-specific glomeruli receive input about three female-produced signals, the primary pheromone component, serving as an attractant, and two minor constituents, serving a dual function, i.e. attraction versus inhibition of attraction. From the antennal-lobe glomeruli, the information is conveyed to higher olfactory centers, including the lateral protocerebrum, via three main paths – of which the medial tract is the most prominent. In this study, we traced physiologically identified medial-tract projection neurons from each of the three male‑specific glomeruli with the aim of mapping their terminal branches in the lateral protocerebrum. Our data suggest that the neurons’ wide-spread projections are organized according to behavioral significance, including a spatial separation of signals representing attraction versus inhibition – however, with a unique capacity of switching behavioral consequence based on the amount of the minor components.