Disordered breathing in a mouse model of Dravet syndrome

  1. Fu-Shan Kuo
  2. Colin M Cleary
  3. Joseph L LoTurco
  4. Xinnian Chen
  5. Daniel K Mulkey  Is a corresponding author
  1. University of Connecticut, United States

Abstract

Dravet syndrome (DS) is a form of epilepsy with a high incidence of sudden unexpected death in epilepsy (SUDEP). Respiratory failure is a leading cause of SUDEP, and DS patients' frequently exhibit disordered breathing. Despite this, mechanisms underlying respiratory dysfunction in DS are unknown. We found that mice expressing a DS-associated Scn1a missense mutation (A1783V) conditionally in inhibitory neurons (Slc32a1cre/+::Scn1aA1783V fl/+; defined as Scn1aΔE26) exhibit spontaneous seizures, die prematurely and present a respiratory phenotype including hypoventilation, apnea, and a diminished ventilatory response to CO2. At the cellular level in the retrotrapezoid nucleus (RTN), we found inhibitory neurons expressing the Scn1a A1783V variant are less excitable, whereas glutamatergic chemosensitive RTN neurons, which are a key source of the CO2/H+-dependent drive to breathe, are hyper-excitable in slices from Scn1aΔE26 mice. These results show loss of Scn1a function can disrupt respiratory control at the cellular and whole animal levels.

Data availability

We have included source data files for all summary figures that do not include individual data points.

Article and author information

Author details

  1. Fu-Shan Kuo

    Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Colin M Cleary

    Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joseph L LoTurco

    Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Xinnian Chen

    Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel K Mulkey

    Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
    For correspondence
    daniel.mulkey@uconn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7040-3927

Funding

National Institutes of Health (HL104101)

  • Daniel K Mulkey

Dravet Syndrome Foundation (AG180243)

  • Daniel K Mulkey

American Epilepsy Society

  • Fu-Shan Kuo

National Institutes of Health (NS104999)

  • Joseph L LoTurco

National Institutes of Health (HL142227)

  • Colin M Cleary

National Institutes of Health (HL137094)

  • Daniel K Mulkey

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal use was in accordance with guidelines approved by the University of Connecticut Institutional Animal Care and Use Committee. (Protocols A16-034 and A17-002).

Copyright

© 2019, Kuo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,267
    views
  • 446
    downloads
  • 48
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fu-Shan Kuo
  2. Colin M Cleary
  3. Joseph L LoTurco
  4. Xinnian Chen
  5. Daniel K Mulkey
(2019)
Disordered breathing in a mouse model of Dravet syndrome
eLife 8:e43387.
https://doi.org/10.7554/eLife.43387

Share this article

https://doi.org/10.7554/eLife.43387

Further reading

    1. Neuroscience
    Georgin Jacob, RT Pramod, SP Arun
    Research Article

    Most visual tasks involve looking for specific object features. But we also often perform property-based tasks where we look for specific property in an image, such as finding an odd item, deciding if two items are same, or if an object has symmetry. How do we solve such tasks? These tasks do not fit into standard models of decision making because their underlying feature space and decision process is unclear. Using well-known principles governing multiple object representations, we show that displays with repeating elements can be distinguished from heterogeneous displays using a property we define as visual homogeneity. In behavior, visual homogeneity predicted response times on visual search, same-different and symmetry tasks. Brain imaging during visual search and symmetry tasks revealed that visual homogeneity was localized to a region in the object-selective cortex. Thus, property-based visual tasks are solved in a localized region in the brain by computing visual homogeneity.

    1. Neuroscience
    Célian Bimbard, Flóra Takács ... Philip Coen
    Tools and Resources

    Electrophysiology has proven invaluable to record neural activity, and the development of Neuropixels probes dramatically increased the number of recorded neurons. These probes are often implanted acutely, but acute recordings cannot be performed in freely moving animals and the recorded neurons cannot be tracked across days. To study key behaviors such as navigation, learning, and memory formation, the probes must be implanted chronically. An ideal chronic implant should (1) allow stable recordings of neurons for weeks; (2) allow reuse of the probes after explantation; (3) be light enough for use in mice. Here, we present the ‘Apollo Implant’, an open-source and editable device that meets these criteria and accommodates up to two Neuropixels 1.0 or 2.0 probes. The implant comprises a ‘payload’ module which is attached to the probe and is recoverable, and a ‘docking’ module which is cemented to the skull. The design is adjustable, making it easy to change the distance between probes, the angle of insertion, and the depth of insertion. We tested the implant across eight labs in head-fixed mice, freely moving mice, and freely moving rats. The number of neurons recorded across days was stable, even after repeated implantations of the same probe. The Apollo implant provides an inexpensive, lightweight, and flexible solution for reusable chronic Neuropixels recordings.