Emotional faces guide the eyes in the absence of awareness

  1. Petra Vetter  Is a corresponding author
  2. Stephanie Badde
  3. Elizabeth A Phelps
  4. Marisa Carrasco  Is a corresponding author
  1. Royal Holloway, University of London, United Kingdom
  2. New York University, United States

Abstract

The ability to act quickly to a threat is a key skill for survival. Under awareness, threat-related emotional information, such as an angry or fearful face, has not only perceptual advantages but also guides rapid actions such as eye movements. Emotional information that is suppressed from awareness still confers perceptual and attentional benefits. However, it is unknown whether suppressed emotional information can directly guide actions, or whether emotional information has to enter awareness to do so. We suppressed emotional faces from awareness using continuous flash suppression and tracked eye gaze position. Under successful suppression, as indicated by objective and subjective measures, gaze moved towards fearful faces, but away from angry faces. Our findings reveal that: (1) threat-related emotional stimuli can guide eye movements in the absence of visual awareness; (2) threat-related emotional face information guides distinct oculomotor actions depending on the type of threat conveyed by the emotional expression.

Data availability

Source data and all analyses are available on Github (https://github.com/StephBadde/EyeMovementsSuppressedEmotionalFaces).

Article and author information

Author details

  1. Petra Vetter

    Department of Psychology, Royal Holloway, University of London, Egham, United Kingdom
    For correspondence
    petra.vetter@rhul.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6516-4637
  2. Stephanie Badde

    Department of Psychology, New York University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4005-5503
  3. Elizabeth A Phelps

    Department of Psychology, New York University, New York, United States
    Competing interests
    No competing interests declared.
  4. Marisa Carrasco

    Department of Psychology, New York University, New York, United States
    For correspondence
    marisa.carrasco@nyu.edu
    Competing interests
    Marisa Carrasco, Reviewing editor, eLife.

Funding

Deutsche Forschungsgemeinschaft (VE 739/1-1)

  • Petra Vetter

National Institutes of Health (NIH-RO1-EY016200)

  • Marisa Carrasco

Deutsche Forschungsgemeinschaft (BA 5600/1-1)

  • Stephanie Badde

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants took part in the experiment in exchange for course credits and signed an informed consent form. The experiment was conducted according to the guidelines of the Declaration of Helsinki and approved by the ethics committee of New York University (IRB# 13-9582).

Copyright

© 2019, Vetter et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,847
    views
  • 459
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Petra Vetter
  2. Stephanie Badde
  3. Elizabeth A Phelps
  4. Marisa Carrasco
(2019)
Emotional faces guide the eyes in the absence of awareness
eLife 8:e43467.
https://doi.org/10.7554/eLife.43467

Share this article

https://doi.org/10.7554/eLife.43467

Further reading

    1. Neuroscience
    Frederick Federer, Justin Balsor ... Alessandra Angelucci
    Research Article

    In the mammalian neocortex, inhibition is important for dynamically balancing excitation and shaping the response properties of cells and circuits. The various computational functions of inhibition are thought to be mediated by different inhibitory neuron types, of which a large diversity exists in several species. Current understanding of the function and connectivity of distinct inhibitory neuron types has mainly derived from studies in transgenic mice. However, it is unknown whether knowledge gained from mouse studies applies to the non-human primate, the model system closest to humans. The lack of viral tools to selectively access inhibitory neuron types has been a major impediment to studying their function in the primate. Here, we have thoroughly validated and characterized several recently developed viral vectors designed to restrict transgene expression to GABAergic cells or their parvalbumin (PV) subtype, and identified two types that show high specificity and efficiency in marmoset V1. We show that in marmoset V1, AAV-h56D induces transgene expression in GABAergic cells with up to 91–94% specificity and 79% efficiency, but this depends on viral serotype and cortical layer. AAV-PHP.eB-S5E2 induces transgene expression in PV cells across all cortical layers with up to 98% specificity and 86–90% efficiency, depending on layer. Thus, these viral vectors are promising tools for studying GABA and PV cell function and connectivity in the primate cortex.

    1. Neuroscience
    Audrey T Medeiros, Scott J Gratz ... Kate M O'Connor-Giles
    Research Article

    Synaptic heterogeneity is a hallmark of nervous systems that enables complex and adaptable communication in neural circuits. To understand circuit function, it is thus critical to determine the factors that contribute to the functional diversity of synapses. We investigated the contributions of voltage-gated calcium channel (VGCC) abundance, spatial organization, and subunit composition to synapse diversity among and between synapses formed by two closely related Drosophila glutamatergic motor neurons with distinct neurotransmitter release probabilities (Pr). Surprisingly, VGCC levels are highly predictive of heterogeneous Pr among individual synapses of either low- or high-Pr inputs, but not between inputs. We find that the same number of VGCCs are more densely organized at high-Pr synapses, consistent with tighter VGCC-synaptic vesicle coupling. We generated endogenously tagged lines to investigate VGCC subunits in vivo and found that the α2δ–3 subunit Straightjacket along with the CAST/ELKS active zone (AZ) protein Bruchpilot, both key regulators of VGCCs, are less abundant at high-Pr inputs, yet positively correlate with Pr among synapses formed by either input. Consistently, both Straightjacket and Bruchpilot levels are dynamically increased across AZs of both inputs when neurotransmitter release is potentiated to maintain stable communication following glutamate receptor inhibition. Together, these findings suggest a model in which VGCC and AZ protein abundance intersects with input-specific spatial and molecular organization to shape the functional diversity of synapses.