Stiffness and tension gradients of the hair cell's tip-link complex in the mammalian cochlea

  1. Mélanie Tobin
  2. Atitheb Chaiyasitdhi
  3. Vincent Michel
  4. Nicolas Antoine Michalski
  5. Pascal Martin  Is a corresponding author
  1. PSL Research University, France
  2. Sorbonne Université, France

Abstract

Sound analysis by the cochlea relies on frequency tuning of mechanosensory hair cells along a tonotopic axis. To clarify the underlying biophysical mechanism, we have investigated the micromechanical properties of the hair cell's mechanoreceptive hair bundle within the apical half of the rat cochlea. We studied both inner and outer hair cells, which send nervous signals to the brain and amplify cochlear vibrations, respectively. We find that tonotopy is associated with gradients of stiffness and resting mechanical tension, with steeper gradients for outer hair cells, emphasizing the division of labor between the two hair-cell types. We demonstrate that tension in the tip links that convey force to the mechano-electrical transduction channels increases at reduced Ca2+. Finally, we reveal gradients in stiffness and tension at the level of a single tip link. We conclude that mechanical gradients of the tip-link complex may help specify the characteristic frequency of the hair cell.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3, 5 and 6.

Article and author information

Author details

  1. Mélanie Tobin

    Laboratoire Physico-Chimie Curie, PSL Research University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Atitheb Chaiyasitdhi

    Laboratoire Physico-Chimie Curie, PSL Research University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Vincent Michel

    Sorbonne Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicolas Antoine Michalski

    Sorbonne Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1287-2709
  5. Pascal Martin

    Laboratoire Physico-Chimie Curie, PSL Research University, Paris, France
    For correspondence
    pascal.martin@curie.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6860-4677

Funding

French National Agency for Research (ANR-11-BSV5-011)

  • Pascal Martin

Labex Celltisphybio part of the Idex PSL (ANR-10-LABX-0038)

  • Pascal Martin

French National Agency for Research (ANR-16-CE13-0015)

  • Pascal Martin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were approved by the Ethics committee on animal experimentation of the Institut Curie; they complied with the European and French-National Regulation for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (Directive 2010/63; French Decree 2013-118).

Copyright

© 2019, Tobin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,011
    views
  • 423
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mélanie Tobin
  2. Atitheb Chaiyasitdhi
  3. Vincent Michel
  4. Nicolas Antoine Michalski
  5. Pascal Martin
(2019)
Stiffness and tension gradients of the hair cell's tip-link complex in the mammalian cochlea
eLife 8:e43473.
https://doi.org/10.7554/eLife.43473

Share this article

https://doi.org/10.7554/eLife.43473

Further reading

    1. Neuroscience
    Kiichi Watanabe, Hui Chiu, David J Anderson
    Tools and Resources

    Monitoring neuronal activity at single-cell resolution in freely moving Drosophila engaged in social behaviors is challenging because of their small size and lack of transparency. Extant methods, such as Flyception, are highly invasive. Whole-brain calcium imaging in head-fixed, walking flies is feasible but the animals cannot perform the consummatory phases of social behaviors like aggression or mating under these conditions. This has left open the fundamental question of whether neurons identified as functionally important for such behaviors using loss- or gain-of-function screens are actually active during the natural performance of such behaviors, and if so during which phase(s). Here, we perform brain-wide mapping of active cells expressing the Immediate Early Gene hr38 using a high-sensitivity/low background fluorescence in situ hybridization (FISH) amplification method called HCR-3.0. Using double-labeling for hr38 mRNA and for GFP, we describe the activity of several classes of aggression-promoting neurons during courtship and aggression, including P1a cells, an intensively studied population of male-specific interneurons. Using HI-FISH in combination with optogenetic activation of aggression-promoting neurons (opto-HI-FISH), we identify candidate downstream functional targets of these cells in a brain-wide, unbiased manner. Finally, we compare the activity of P1a neurons during sequential performance of courtship and aggression, using intronic vs. exonic hr38 probes to differentiate newly synthesized nuclear transcripts from cytoplasmic transcripts synthesized at an earlier time. These data provide evidence suggesting that different subsets of P1a neurons may be active during courtship vs. aggression. HI-FISH and associated methods may help to fill an important lacuna in the armamentarium of tools for neural circuit analysis in Drosophila.

    1. Neuroscience
    Mohsen Alavash
    Insight

    Combining electrophysiological, anatomical and functional brain maps reveals networks of beta neural activity that align with dopamine uptake.