Confidence predicts speed-accuracy tradeoff for subsequent decisions in humans

  1. Kobe Desender  Is a corresponding author
  2. Annika Boldt
  3. Tom Verguts
  4. Tobias H Donner
  1. University Medical Center Hamburg-Eppendorf, Germany
  2. University College London, United Kingdom
  3. Ghent University, Belgium

Abstract

When external feedback about decision outcomes is lacking, agents need to adapt their decision policies based on an internal estimate of the correctness of their choices (i.e., decision confidence). We hypothesized that agents use confidence to continuously update the tradeoff between the speed and accuracy of their decisions: When confidence is low in one decision, the agent needs more evidence before committing to a choice in the next decision, leading to slower but more accurate decisions. We tested this hypothesis by fitting a bounded accumulation decision model to behavioral data from three different perceptual choice tasks. Decision bounds indeed depended on the reported confidence on the previous trial, independent of objective accuracy. This increase in decision bound was predicted by a centro-parietal EEG component sensitive to confidence. We conclude that internally computed neural signals of confidence predict the ongoing adjustment of decision policies.

Data availability

All data has been deposited online and can be freely accessed (https://osf.io/83x7c/ and https://github.com/AnnikaBoldt/Boldt_Yeung_2015). All analysis code is available on GitHub.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Kobe Desender

    Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    For correspondence
    kobe.desender@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5462-4260
  2. Annika Boldt

    Institute of Cognitive Neuroscience, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. Tom Verguts

    Department of Experimental Psychology, Ghent University, Ghent, Belgium
    Competing interests
    No competing interests declared.
  4. Tobias H Donner

    Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    Tobias H Donner, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7559-6019

Funding

Fonds Wetenschappelijk Onderzoek (FWO [PEGASUS]² Marie Skłodowska-Curie fellow)

  • Kobe Desender

Economic and Social Research Council (PhD studentship)

  • Annika Boldt

Wellcome (Sir Henry Wellcome Postdoctoral Fellowship)

  • Annika Boldt

Deutsche Forschungsgemeinschaft (DO 1240/2-1)

  • Tobias H Donner

Deutsche Forschungsgemeinschaft (DO 1240/3-1)

  • Tobias H Donner

Fonds Wetenschappelijk Onderzoek (G010419N)

  • Kobe Desender
  • Tom Verguts

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Written informed consent and consent to publish was obtained prior to participiation. All procedures were approved by the local ethics committee of the University Medical Center, Hamburg-Eppendorf (PV5512).

Copyright

© 2019, Desender et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,290
    views
  • 539
    downloads
  • 72
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kobe Desender
  2. Annika Boldt
  3. Tom Verguts
  4. Tobias H Donner
(2019)
Confidence predicts speed-accuracy tradeoff for subsequent decisions in humans
eLife 8:e43499.
https://doi.org/10.7554/eLife.43499

Share this article

https://doi.org/10.7554/eLife.43499

Further reading

    1. Neuroscience
    Jacob A Miller
    Insight

    When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.