Confidence predicts speed-accuracy tradeoff for subsequent decisions in humans

  1. Kobe Desender  Is a corresponding author
  2. Annika Boldt
  3. Tom Verguts
  4. Tobias H Donner
  1. University Medical Center Hamburg-Eppendorf, Germany
  2. University College London, United Kingdom
  3. Ghent University, Belgium

Abstract

When external feedback about decision outcomes is lacking, agents need to adapt their decision policies based on an internal estimate of the correctness of their choices (i.e., decision confidence). We hypothesized that agents use confidence to continuously update the tradeoff between the speed and accuracy of their decisions: When confidence is low in one decision, the agent needs more evidence before committing to a choice in the next decision, leading to slower but more accurate decisions. We tested this hypothesis by fitting a bounded accumulation decision model to behavioral data from three different perceptual choice tasks. Decision bounds indeed depended on the reported confidence on the previous trial, independent of objective accuracy. This increase in decision bound was predicted by a centro-parietal EEG component sensitive to confidence. We conclude that internally computed neural signals of confidence predict the ongoing adjustment of decision policies.

Data availability

All data has been deposited online and can be freely accessed (https://osf.io/83x7c/ and https://github.com/AnnikaBoldt/Boldt_Yeung_2015). All analysis code is available on GitHub.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Kobe Desender

    Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    For correspondence
    kobe.desender@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5462-4260
  2. Annika Boldt

    Institute of Cognitive Neuroscience, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. Tom Verguts

    Department of Experimental Psychology, Ghent University, Ghent, Belgium
    Competing interests
    No competing interests declared.
  4. Tobias H Donner

    Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    Tobias H Donner, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7559-6019

Funding

Fonds Wetenschappelijk Onderzoek (FWO [PEGASUS]² Marie Skłodowska-Curie fellow)

  • Kobe Desender

Economic and Social Research Council (PhD studentship)

  • Annika Boldt

Wellcome (Sir Henry Wellcome Postdoctoral Fellowship)

  • Annika Boldt

Deutsche Forschungsgemeinschaft (DO 1240/2-1)

  • Tobias H Donner

Deutsche Forschungsgemeinschaft (DO 1240/3-1)

  • Tobias H Donner

Fonds Wetenschappelijk Onderzoek (G010419N)

  • Kobe Desender
  • Tom Verguts

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Roozbeh Kiani, New York University, United States

Ethics

Human subjects: Written informed consent and consent to publish was obtained prior to participiation. All procedures were approved by the local ethics committee of the University Medical Center, Hamburg-Eppendorf (PV5512).

Version history

  1. Received: November 8, 2018
  2. Accepted: August 16, 2019
  3. Accepted Manuscript published: August 20, 2019 (version 1)
  4. Version of Record published: August 27, 2019 (version 2)

Copyright

© 2019, Desender et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,945
    views
  • 492
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kobe Desender
  2. Annika Boldt
  3. Tom Verguts
  4. Tobias H Donner
(2019)
Confidence predicts speed-accuracy tradeoff for subsequent decisions in humans
eLife 8:e43499.
https://doi.org/10.7554/eLife.43499

Share this article

https://doi.org/10.7554/eLife.43499

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.