Bichir external gills arise via heterochronic shift that accelerates hyoid arch development

  1. Jan Stundl
  2. Anna Pospisilova
  3. David Jandzik
  4. Peter Fabian
  5. Barbora Dobiasova
  6. Martin Minarik
  7. Brian D Metscher
  8. Vladimir Soukup  Is a corresponding author
  9. Robert Cerny  Is a corresponding author
  1. Charles University in Prague, Czech Republic
  2. University of Vienna, Austria

Abstract

In most vertebrates, pharyngeal arches form in a stereotypic anterior-to-posterior progression. To gain insight into the mechanisms underlying evolutionary changes in pharyngeal arch development, here we investigate embryos and larvae of bichirs. Bichirs represent the earliest diverged living group of ray-finned fishes, and possess intriguing traits otherwise typical for lobe-finned fishes such as ventral paired lungs and larval external gills. In bichir embryos, we find that the anteroposterior way of formation of cranial segments is modified by the unique acceleration of the entire hyoid arch segment, with earlier and orchestrated development of the endodermal, mesodermal, and neural crest tissues. This major heterochronic shift in the anteroposterior developmental sequence enables early appearance of the external gills that represent key breathing organs of bichir free-living embryos and early larvae. Bichirs thus stay as unique models for understanding developmental mechanisms facilitating increased breathing capacity.

Data availability

All data generated and analysed during this study are included in the manuscript and providing files. All sources are cited in the Methods chapter.

Article and author information

Author details

  1. Jan Stundl

    Department of Zoology, Charles University in Prague, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  2. Anna Pospisilova

    Department of Zoology, Charles University in Prague, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  3. David Jandzik

    Department of Zoology, Charles University in Prague, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  4. Peter Fabian

    Department of Zoology, Charles University in Prague, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  5. Barbora Dobiasova

    Department of Zoology, Charles University in Prague, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  6. Martin Minarik

    Department of Zoology, Charles University in Prague, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6660-0031
  7. Brian D Metscher

    Department of Theoretical Biology, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  8. Vladimir Soukup

    Department of Zoology, Charles University in Prague, Prague, Czech Republic
    For correspondence
    vladimir.soukup@natur.cuni.cz
    Competing interests
    The authors declare that no competing interests exist.
  9. Robert Cerny

    Department of Zoology, Charles University in Prague, Prague, Czech Republic
    For correspondence
    robert.cerny@natur.cuni.cz
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0022-0199

Funding

Charles University Grant Agency (1448514)

  • Jan Stundl

Charles University Grant Agency (640016)

  • Anna Pospisilova

Charles University Grant Agency (220213)

  • Martin Minarik

Czech Science Foundation (16-23836S)

  • Robert Cerny

Charles University Grant Agency (726516)

  • Martin Minarik

The Charles University grant SVV (260434/2019)

  • Jan Stundl
  • Anna Pospisilova
  • David Jandzik
  • Vladimir Soukup
  • Robert Cerny

The Charles University Research Centre program (204069)

  • Vladimir Soukup

The grant of the Scientific Grant Agency of Slovak Republic VEGA (1/0415/17)

  • David Jandzik

The European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant (751066)

  • David Jandzik

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Stundl et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,472
    views
  • 306
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jan Stundl
  2. Anna Pospisilova
  3. David Jandzik
  4. Peter Fabian
  5. Barbora Dobiasova
  6. Martin Minarik
  7. Brian D Metscher
  8. Vladimir Soukup
  9. Robert Cerny
(2019)
Bichir external gills arise via heterochronic shift that accelerates hyoid arch development
eLife 8:e43531.
https://doi.org/10.7554/eLife.43531

Share this article

https://doi.org/10.7554/eLife.43531

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Menglei Yang, Hafiz Muhammad Jafar Hussain ... Baolu Shi
    Research Article

    Asthenoteratozoospermia, a prevalent cause of male infertility, lacks a well-defined etiology. DNAH12 is a special dynein featured by the absence of a microtubule-binding domain, however, its functions in spermatogenesis remain largely unknown. Through comprehensive genetic analyses involving whole-exome sequencing and subsequent Sanger sequencing on infertile patients and fertile controls from six distinct families, we unveiled six biallelic mutations in DNAH12 that co-segregate recessively with male infertility in the studied families. Transmission electron microscopy (TEM) revealed pronounced axonemal abnormalities, including inner dynein arms (IDAs) impairment and central pair (CP) loss in sperm flagella of the patients. Mouse models (Dnah12-/- and Dnah12mut/mut) were generated and recapitulated the reproductive defects in the patients. Noteworthy, DNAH12 deficiency did not show effects on cilium organization and function. Mechanistically, DNAH12 was confirmed to interact with two other IDA components DNALI1 and DNAH1, while disruption of DNAH12 leads to failed recruitment of DNALI1 and DNAH1 to IDAs and compromised sperm development. Furthermore, DNAH12 also interacts with radial spoke head proteins RSPH1, RSPH9, and DNAJB13 to regulate CP stability. Moreover, the infertility of Dnah12-/- mice could be overcome by intracytoplasmic sperm injection (ICSI) treatment. Collectively, DNAH12 plays a crucial role in the proper organization of axoneme in sperm flagella, but not cilia, by recruiting DNAH1 and DNALI1 in both humans and mice. These findings expand our comprehension of dynein component assembly in flagella and cilia and provide a valuable marker for genetic counseling and diagnosis of asthenoteratozoospermia in clinical practice.

    1. Cell Biology
    2. Developmental Biology
    Pavan K Nayak, Arul Subramanian, Thomas F Schilling
    Research Article

    Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.