Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer's and Pick's diseases

Abstract

Assembly of microtubule-associated protein tau into filamentous inclusions underlies a range of neurodegenerative diseases. Tau filaments adopt different conformations in Alzheimer's and Pick's diseases. Here, we used cryo- and immuno- electron microscopy to characterise filaments that were assembled from recombinant full-length human tau with four (2N4R) or three (2N3R) microtubule-binding repeats in the presence of heparin. 2N4R tau assembles into multiple types of filaments, and the structures of three types reveal similar 'kinked hairpin' folds, in which the second and third repeats pack against each other. 2N3R tau filaments are structurally homogeneous, and adopt a dimeric core, where the third repeats of two tau molecules pack in a parallel manner. The heparin-induced tau filaments differ from those of Alzheimer's or Pick's disease, which have larger cores with different repeat compositions. Our results illustrate the structural versatility of amyloid filaments, and raise questions about the relevance of in vitro assembly.

Data availability

EM maps have been submitted to EMDB, under codes 4563, 4564, 4565 and 4566Atomic models have been submitted to PDB under codes 6QJH, 6QJM, 6QJP and 6QJQRaw EM images have been submitted to EMPIAR under codes 10242 and 10243

The following data sets were generated

Article and author information

Author details

  1. Wenjuan Zhang

    Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  2. Benjamin Falcon

    Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  3. Alexey G Murzin

    Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  4. Juan Fan

    Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  5. R Anthony Crowther

    Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  6. Michel Goedert

    Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    mg@mrc-lmb.cam.ac.uk
    Competing interests
    Michel Goedert, Reviewing editor, eLife.
  7. Sjors HW Scheres

    Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    scheres@mrc-lmb.cam.ac.uk
    Competing interests
    Sjors HW Scheres, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0462-6540

Funding

Medical Research Council (MC_U105184291)

  • Michel Goedert

European Union (Joint Programme- Neurodegeneration Research REfrAME)

  • Michel Goedert

Medical Research Council (MC_UP_A025_1013)

  • Sjors HW Scheres

European Union (IMPRIND-116060)

  • Michel Goedert

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,710
    views
  • 1,935
    downloads
  • 321
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wenjuan Zhang
  2. Benjamin Falcon
  3. Alexey G Murzin
  4. Juan Fan
  5. R Anthony Crowther
  6. Michel Goedert
  7. Sjors HW Scheres
(2019)
Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer's and Pick's diseases
eLife 8:e43584.
https://doi.org/10.7554/eLife.43584

Share this article

https://doi.org/10.7554/eLife.43584

Further reading

    1. Structural Biology and Molecular Biophysics
    Laura-Marie Silbermann, Benjamin Vermeer ... Katarzyna Tych
    Review Article

    Molecular chaperones are vital proteins that maintain protein homeostasis by assisting in protein folding, activation, degradation, and stress protection. Among them, heat-shock protein 90 (Hsp90) stands out as an essential proteostasis hub in eukaryotes, chaperoning hundreds of ‘clients’ (substrates). After decades of research, several ‘known unknowns’ about the molecular function of Hsp90 remain unanswered, hampering rational drug design for the treatment of cancers, neurodegenerative, and other diseases. We highlight three fundamental open questions, reviewing the current state of the field for each, and discuss new opportunities, including single-molecule technologies, to answer the known unknowns of the Hsp90 chaperone.

    1. Structural Biology and Molecular Biophysics
    Chuchu Wang, Chunyu Zhao ... Cong Liu
    Research Advance

    Previously, we reported that α-synuclein (α-syn) clusters synaptic vesicles (SV) Diao et al., 2013, and neutral phospholipid lysophosphatidylcholine (LPC) can mediate this clustering Lai et al., 2023. Meanwhile, post-translational modifications (PTMs) of α-syn such as acetylation and phosphorylation play important yet distinct roles in regulating α-syn conformation, membrane binding, and amyloid aggregation. However, how PTMs regulate α-syn function in presynaptic terminals remains unclear. Here, based on our previous findings, we further demonstrate that N-terminal acetylation, which occurs under physiological conditions and is irreversible in mammalian cells, significantly enhances the functional activity of α-syn in clustering SVs. Mechanistic studies reveal that this enhancement is caused by the N-acetylation-promoted insertion of α-syn’s N-terminus and increased intermolecular interactions on the LPC-containing membrane. N-acetylation in our work is shown to fine-tune the interaction between α-syn and LPC, mediating α-syn’s role in synaptic vesicle clustering.