Importin-9 wraps around the H2A-H2B core to act as nuclear importer and histone chaperone

  1. Abhilash Padavannil
  2. Prithwijit Sarkar
  3. Seung Joong Kim
  4. Tolga Cagatay
  5. Jenny Jiou
  6. Chad A Brautigam
  7. Diana R Tomchick
  8. Andrej Sali
  9. Sheena D'Arcy
  10. Yuh Min Chook  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
  2. University of Texas at Dallas, United States
  3. Korea Advanced Institute of Science and Technology (KAIST), Korea (South), Republic of
  4. University of California, San Francisco, United States

Abstract

We report the crystal structure of nuclear import receptor Importin-9 bound to its cargo, the histones H2A-H2B. Importin-9 wraps around the core, globular region of H2A-H2B to form an extensive interface. The nature of this interface coupled with quantitative analysis of deletion mutants of H2A-H2B suggest that the NLS-like sequences in the H2A-H2B tails play a minor role in import. Importin-9•H2A-H2B is reminiscent of interactions between histones and histone chaperones in that it precludes H2A-H2B interactions with DNA and H3-H4 as seen in the nucleosome. Like many histone chaperones, which prevent inappropriate non-nucleosomal interactions, Importin-9 also sequesters H2A-H2B from DNA. Importin-9 appears to act as a storage chaperone for H2A-H2B while escorting it to the nucleus. Surprisingly, RanGTP does not dissociate Importin-9•H2A-H2B but assembles into a RanGTP•Importin-9•H2A-H2B complex. The presence of Ran in the complex, however, modulates Imp9-H2A-H2B interactions to facilitate its dissociation by DNA and assembly into a nucleosome.

Data availability

Diffraction data have been deposited in PDB under the accession code 6N1Z

The following data sets were generated

Article and author information

Author details

  1. Abhilash Padavannil

    Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Prithwijit Sarkar

    Department of Biological Sciences, University of Texas at Dallas, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Seung Joong Kim

    Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
  4. Tolga Cagatay

    Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jenny Jiou

    Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Chad A Brautigam

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Diana R Tomchick

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7529-4643
  8. Andrej Sali

    Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0435-6197
  9. Sheena D'Arcy

    Department of Chemistry and Biochemistry, University of Texas at Dallas, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5055-988X
  10. Yuh Min Chook

    Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    yuhmin.chook@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4974-0726

Funding

National Institutes of Health

  • Yuh Min Chook

Welch Foundation

  • Yuh Min Chook

Leukemia and Lymphoma Society

  • Yuh Min Chook

National Institutes of Health

  • Abhilash Padavannil
  • Tolga Cagatay
  • Jenny Jiou

National Institutes of Health

  • Chad A Brautigam
  • Diana R Tomchick
  • Andrej Sali

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrea Musacchio, Max Planck Institute of Molecular Physiology, Germany

Version history

  1. Received: November 14, 2018
  2. Accepted: March 9, 2019
  3. Accepted Manuscript published: March 11, 2019 (version 1)
  4. Version of Record published: April 8, 2019 (version 2)

Copyright

© 2019, Padavannil et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,402
    views
  • 639
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Abhilash Padavannil
  2. Prithwijit Sarkar
  3. Seung Joong Kim
  4. Tolga Cagatay
  5. Jenny Jiou
  6. Chad A Brautigam
  7. Diana R Tomchick
  8. Andrej Sali
  9. Sheena D'Arcy
  10. Yuh Min Chook
(2019)
Importin-9 wraps around the H2A-H2B core to act as nuclear importer and histone chaperone
eLife 8:e43630.
https://doi.org/10.7554/eLife.43630

Share this article

https://doi.org/10.7554/eLife.43630

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Shun Kai Yang, Shintaroh Kubo ... Khanh Huy Bui
    Research Article

    Acetylation of α-tubulin at the lysine 40 residue (αK40) by αTAT1/MEC-17 acetyltransferase modulates microtubule properties and occurs in most eukaryotic cells. Previous literatures suggest that acetylated microtubules are more stable and damage resistant. αK40 acetylation is the only known microtubule luminal post-translational modification site. The luminal location suggests that the modification tunes the lateral interaction of protofilaments inside the microtubule. In this study, we examined the effect of tubulin acetylation on the doublet microtubule (DMT) in the cilia of Tetrahymena thermophila using a combination of cryo-electron microscopy, molecular dynamics, and mass spectrometry. We found that αK40 acetylation exerts a small-scale effect on the DMT structure and stability by influencing the lateral rotational angle. In addition, comparative mass spectrometry revealed a link between αK40 acetylation and phosphorylation in cilia.