Unified single-cell analysis of testis gene regulation and pathology in 5 mouse strains

  1. Min Jung
  2. Daniel Wells
  3. Jannette Rusch
  4. Suhaira Ahmad
  5. Jonathan Marchini
  6. Simon R Myers  Is a corresponding author
  7. Donald F Conrad  Is a corresponding author
  1. Washington University School of Medicine, United States
  2. University of Oxford, United Kingdom
  3. Oregon Health and Science University, United States

Abstract

To fully exploit the potential of single-cell functional genomics in the study of development and disease, robust methods are needed to simplify the analysis of data across samples, time-points and individuals. Here we introduce a model-based factor analysis method, SDA, to analyse a novel 57,600-cell dataset from the testes of wild-type mice and mice with gonadal defects due to disruption of the genes Mlh3, Hormad1, Cul4a or Cnp. By jointly analysing mutant and wild-type cells we decomposed our data into 46 components that identify novel meiotic gene-regulatory programmes, mutant-specific pathological processes, and technical effects, and provide a framework for imputation. We identify, de novo, DNA sequence motifs associated with individual components that define temporally varying modes of gene expression control. Analysis of SDA components also led us to identify a rare population of macrophages within the seminiferous tubules of Mlh3-/- and Hormad1-/- mice, an area typically associated with immune privilege.

Data availability

Raw data and processed files for Drop-seq and 10X Genomics experiments are available in GEO under accession number: GSE113293

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Min Jung

    Department of Genetics, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel Wells

    Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2007-8978
  3. Jannette Rusch

    Department of Genetics, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Suhaira Ahmad

    Department of Genetics, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jonathan Marchini

    Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Simon R Myers

    Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    For correspondence
    myers@stats.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  7. Donald F Conrad

    Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, United States
    For correspondence
    conradon@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3828-8970

Funding

Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01HD078641)

  • Donald F Conrad

National Institute of Mental Health (R01MH101810)

  • Donald F Conrad

Wellcome (098387/Z/12/Z)

  • Simon R Myers

Wellcome (109109/Z/15/Z)

  • Daniel Wells

European Research Council (617306)

  • Jonathan Marchini

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Deborah Bourc'his, Institut Curie, France

Ethics

Animal experimentation: All animal experiments were performed in compliance with the regulations of the Animal Studies Committee at Washington University in St. Louis under approved protocol #20160089.

Version history

  1. Received: November 28, 2018
  2. Accepted: June 17, 2019
  3. Accepted Manuscript published: June 25, 2019 (version 1)
  4. Version of Record published: July 9, 2019 (version 2)

Copyright

© 2019, Jung et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,050
    Page views
  • 919
    Downloads
  • 72
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Min Jung
  2. Daniel Wells
  3. Jannette Rusch
  4. Suhaira Ahmad
  5. Jonathan Marchini
  6. Simon R Myers
  7. Donald F Conrad
(2019)
Unified single-cell analysis of testis gene regulation and pathology in 5 mouse strains
eLife 8:e43966.
https://doi.org/10.7554/eLife.43966

Share this article

https://doi.org/10.7554/eLife.43966

Further reading

    1. Computational and Systems Biology
    Qianmu Yuan, Chong Tian, Yuedong Yang
    Tools and Resources

    Revealing protein binding sites with other molecules, such as nucleic acids, peptides, or small ligands, sheds light on disease mechanism elucidation and novel drug design. With the explosive growth of proteins in sequence databases, how to accurately and efficiently identify these binding sites from sequences becomes essential. However, current methods mostly rely on expensive multiple sequence alignments or experimental protein structures, limiting their genome-scale applications. Besides, these methods haven’t fully explored the geometry of the protein structures. Here, we propose GPSite, a multi-task network for simultaneously predicting binding residues of DNA, RNA, peptide, protein, ATP, HEM, and metal ions on proteins. GPSite was trained on informative sequence embeddings and predicted structures from protein language models, while comprehensively extracting residual and relational geometric contexts in an end-to-end manner. Experiments demonstrate that GPSite substantially surpasses state-of-the-art sequence-based and structure-based approaches on various benchmark datasets, even when the structures are not well-predicted. The low computational cost of GPSite enables rapid genome-scale binding residue annotations for over 568,000 sequences, providing opportunities to unveil unexplored associations of binding sites with molecular functions, biological processes, and genetic variants. The GPSite webserver and annotation database can be freely accessed at https://bio-web1.nscc-gz.cn/app/GPSite.

    1. Cell Biology
    2. Computational and Systems Biology
    Thomas Grandits, Christoph M Augustin ... Alexander Jung
    Research Article

    Computer models of the human ventricular cardiomyocyte action potential (AP) have reached a level of detail and maturity that has led to an increasing number of applications in the pharmaceutical sector. However, interfacing the models with experimental data can become a significant computational burden. To mitigate the computational burden, the present study introduces a neural network (NN) that emulates the AP for given maximum conductances of selected ion channels, pumps, and exchangers. Its applicability in pharmacological studies was tested on synthetic and experimental data. The NN emulator potentially enables massive speed-ups compared to regular simulations and the forward problem (find drugged AP for pharmacological parameters defined as scaling factors of control maximum conductances) on synthetic data could be solved with average root-mean-square errors (RMSE) of 0.47 mV in normal APs and of 14.5 mV in abnormal APs exhibiting early afterdepolarizations (72.5% of the emulated APs were alining with the abnormality, and the substantial majority of the remaining APs demonstrated pronounced proximity). This demonstrates not only very fast and mostly very accurate AP emulations but also the capability of accounting for discontinuities, a major advantage over existing emulation strategies. Furthermore, the inverse problem (find pharmacological parameters for control and drugged APs through optimization) on synthetic data could be solved with high accuracy shown by a maximum RMSE of 0.22 in the estimated pharmacological parameters. However, notable mismatches were observed between pharmacological parameters estimated from experimental data and distributions obtained from the Comprehensive in vitro Proarrhythmia Assay initiative. This reveals larger inaccuracies which can be attributed particularly to the fact that small tissue preparations were studied while the emulator was trained on single cardiomyocyte data. Overall, our study highlights the potential of NN emulators as powerful tool for an increased efficiency in future quantitative systems pharmacology studies.