Unified single-cell analysis of testis gene regulation and pathology in 5 mouse strains

  1. Min Jung
  2. Daniel Wells
  3. Jannette Rusch
  4. Suhaira Ahmad
  5. Jonathan Marchini
  6. Simon R Myers  Is a corresponding author
  7. Donald F Conrad  Is a corresponding author
  1. Washington University School of Medicine, United States
  2. University of Oxford, United Kingdom
  3. Oregon Health and Science University, United States

Abstract

To fully exploit the potential of single-cell functional genomics in the study of development and disease, robust methods are needed to simplify the analysis of data across samples, time-points and individuals. Here we introduce a model-based factor analysis method, SDA, to analyse a novel 57,600-cell dataset from the testes of wild-type mice and mice with gonadal defects due to disruption of the genes Mlh3, Hormad1, Cul4a or Cnp. By jointly analysing mutant and wild-type cells we decomposed our data into 46 components that identify novel meiotic gene-regulatory programmes, mutant-specific pathological processes, and technical effects, and provide a framework for imputation. We identify, de novo, DNA sequence motifs associated with individual components that define temporally varying modes of gene expression control. Analysis of SDA components also led us to identify a rare population of macrophages within the seminiferous tubules of Mlh3-/- and Hormad1-/- mice, an area typically associated with immune privilege.

Data availability

Raw data and processed files for Drop-seq and 10X Genomics experiments are available in GEO under accession number: GSE113293

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Min Jung

    Department of Genetics, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel Wells

    Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2007-8978
  3. Jannette Rusch

    Department of Genetics, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Suhaira Ahmad

    Department of Genetics, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jonathan Marchini

    Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Simon R Myers

    Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    For correspondence
    myers@stats.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  7. Donald F Conrad

    Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, United States
    For correspondence
    conradon@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3828-8970

Funding

Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01HD078641)

  • Donald F Conrad

National Institute of Mental Health (R01MH101810)

  • Donald F Conrad

Wellcome (098387/Z/12/Z)

  • Simon R Myers

Wellcome (109109/Z/15/Z)

  • Daniel Wells

European Research Council (617306)

  • Jonathan Marchini

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed in compliance with the regulations of the Animal Studies Committee at Washington University in St. Louis under approved protocol #20160089.

Copyright

© 2019, Jung et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,077
    views
  • 1,007
    downloads
  • 123
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Min Jung
  2. Daniel Wells
  3. Jannette Rusch
  4. Suhaira Ahmad
  5. Jonathan Marchini
  6. Simon R Myers
  7. Donald F Conrad
(2019)
Unified single-cell analysis of testis gene regulation and pathology in 5 mouse strains
eLife 8:e43966.
https://doi.org/10.7554/eLife.43966

Share this article

https://doi.org/10.7554/eLife.43966

Further reading

    1. Computational and Systems Biology
    Masaaki Uematsu, Jeremy M Baskin
    Tools and Resources

    Plasmid construction is central to life science research, and sequence verification is arguably its costliest step. Long-read sequencing has emerged as a competitor to Sanger sequencing, with the principal benefit that whole plasmids can be sequenced in a single run. Nevertheless, the current cost of nanopore sequencing is still prohibitive for routine sequencing during plasmid construction. We develop a computational approach termed Simple Algorithm for Very Efficient Multiplexing of Oxford Nanopore Experiments for You (SAVEMONEY) that guides researchers to mix multiple plasmids and subsequently computationally de-mixes the resultant sequences. SAVEMONEY defines optimal mixtures in a pre-survey step, and following sequencing, executes a post-analysis workflow involving sequence classification, alignment, and consensus determination. By using Bayesian analysis with prior probability of expected plasmid construction error rate, high-confidence sequences can be obtained for each plasmid in the mixture. Plasmids differing by as little as two bases can be mixed as a single sample for nanopore sequencing, and routine multiplexing of even six plasmids per 180 reads can still maintain high accuracy of consensus sequencing. SAVEMONEY should further democratize whole-plasmid sequencing by nanopore and related technologies, driving down the effective cost of whole-plasmid sequencing to lower than that of a single Sanger sequencing run.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.