Unified single-cell analysis of testis gene regulation and pathology in 5 mouse strains

  1. Min Jung
  2. Daniel Wells
  3. Jannette Rusch
  4. Suhaira Ahmad
  5. Jonathan Marchini
  6. Simon R Myers  Is a corresponding author
  7. Donald F Conrad  Is a corresponding author
  1. Washington University School of Medicine, United States
  2. University of Oxford, United Kingdom
  3. Oregon Health and Science University, United States

Abstract

To fully exploit the potential of single-cell functional genomics in the study of development and disease, robust methods are needed to simplify the analysis of data across samples, time-points and individuals. Here we introduce a model-based factor analysis method, SDA, to analyse a novel 57,600-cell dataset from the testes of wild-type mice and mice with gonadal defects due to disruption of the genes Mlh3, Hormad1, Cul4a or Cnp. By jointly analysing mutant and wild-type cells we decomposed our data into 46 components that identify novel meiotic gene-regulatory programmes, mutant-specific pathological processes, and technical effects, and provide a framework for imputation. We identify, de novo, DNA sequence motifs associated with individual components that define temporally varying modes of gene expression control. Analysis of SDA components also led us to identify a rare population of macrophages within the seminiferous tubules of Mlh3-/- and Hormad1-/- mice, an area typically associated with immune privilege.

Data availability

Raw data and processed files for Drop-seq and 10X Genomics experiments are available in GEO under accession number: GSE113293

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Min Jung

    Department of Genetics, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel Wells

    Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2007-8978
  3. Jannette Rusch

    Department of Genetics, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Suhaira Ahmad

    Department of Genetics, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jonathan Marchini

    Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Simon R Myers

    Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    For correspondence
    myers@stats.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  7. Donald F Conrad

    Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, United States
    For correspondence
    conradon@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3828-8970

Funding

Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01HD078641)

  • Donald F Conrad

National Institute of Mental Health (R01MH101810)

  • Donald F Conrad

Wellcome (098387/Z/12/Z)

  • Simon R Myers

Wellcome (109109/Z/15/Z)

  • Daniel Wells

European Research Council (617306)

  • Jonathan Marchini

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed in compliance with the regulations of the Animal Studies Committee at Washington University in St. Louis under approved protocol #20160089.

Copyright

© 2019, Jung et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,659
    views
  • 980
    downloads
  • 114
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Min Jung
  2. Daniel Wells
  3. Jannette Rusch
  4. Suhaira Ahmad
  5. Jonathan Marchini
  6. Simon R Myers
  7. Donald F Conrad
(2019)
Unified single-cell analysis of testis gene regulation and pathology in 5 mouse strains
eLife 8:e43966.
https://doi.org/10.7554/eLife.43966

Share this article

https://doi.org/10.7554/eLife.43966

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Jian Qiu, Margaritis Voliotis ... Martin J Kelly
    Research Article

    Hypothalamic kisspeptin (Kiss1) neurons are vital for pubertal development and reproduction. Arcuate nucleus Kiss1 (Kiss1ARH) neurons are responsible for the pulsatile release of gonadotropin-releasing hormone (GnRH). In females, the behavior of Kiss1ARH neurons, expressing Kiss1, neurokinin B (NKB), and dynorphin (Dyn), varies throughout the ovarian cycle. Studies indicate that 17β-estradiol (E2) reduces peptide expression but increases Slc17a6 (Vglut2) mRNA and glutamate neurotransmission in these neurons, suggesting a shift from peptidergic to glutamatergic signaling. To investigate this shift, we combined transcriptomics, electrophysiology, and mathematical modeling. Our results demonstrate that E2 treatment upregulates the mRNA expression of voltage-activated calcium channels, elevating the whole-cell calcium current that contributes to high-frequency burst firing. Additionally, E2 treatment decreased the mRNA levels of canonical transient receptor potential (TPRC) 5 and G protein-coupled K+ (GIRK) channels. When Trpc5 channels in Kiss1ARH neurons were deleted using CRISPR/SaCas9, the slow excitatory postsynaptic potential was eliminated. Our data enabled us to formulate a biophysically realistic mathematical model of Kiss1ARH neurons, suggesting that E2 modifies ionic conductances in these neurons, enabling the transition from high-frequency synchronous firing through NKB-driven activation of TRPC5 channels to a short bursting mode facilitating glutamate release. In a low E2 milieu, synchronous firing of Kiss1ARH neurons drives pulsatile release of GnRH, while the transition to burst firing with high, preovulatory levels of E2 would facilitate the GnRH surge through its glutamatergic synaptic connection to preoptic Kiss1 neurons.

    1. Computational and Systems Biology
    David B Blumenthal, Marta Lucchetta ... Martin H Schaefer
    Research Article

    Degree distributions in protein-protein interaction (PPI) networks are believed to follow a power law (PL). However, technical and study bias affect the experimental procedures for detecting PPIs. For instance, cancer-associated proteins have received disproportional attention. Moreover, bait proteins in large-scale experiments tend to have many false-positive interaction partners. Studying the degree distributions of thousands of PPI networks of controlled provenance, we address the question if PL distributions in observed PPI networks could be explained by these biases alone. Our findings are supported by mathematical models and extensive simulations and indicate that study bias and technical bias suffice to produce the observed PL distribution. It is, hence, problematic to derive hypotheses about the topology of the true biological interactome from the PL distributions in observed PPI networks. Our study casts doubt on the use of the PL property of biological networks as a modeling assumption or quality criterion in network biology.