Cellular entry and uncoating of naked and quasi-enveloped human hepatoviruses

  1. Efraín E Rivera-Serrano
  2. Olga González-López
  3. Anshuman Das
  4. Stanley M Lemon  Is a corresponding author
  1. University of North Carolina at Chapel Hill, United States

Abstract

Many 'non-enveloped' viruses, including hepatitis A virus (HAV), are released non-lytically from infected cells as infectious, quasi-enveloped virions cloaked in host membranes. Quasi-enveloped HAV (eHAV) mediates stealthy cell-to-cell spread within the liver, whereas stable naked virions shed in feces are optimized for environmental transmission. eHAV lacks virus-encoded surface proteins, and how it enters cells is unknown. We show both virion types enter by clathrin- and dynamin-dependent endocytosis, facilitated by integrin β1, and traffic through early and late endosomes. Uncoating of naked virions occurs in late endosomes, whereas eHAV undergoes ALIX-dependent trafficking to lysosomes where the quasi-envelope is enzymatically degraded and uncoating ensues coincident with breaching of endolysosomal membranes. Neither virion requires PLA2G16, a phospholipase essential for entry of other picornaviruses. Thus naked and quasi-enveloped virions enter via similar endocytic pathways, but uncoat in different compartments and release their genomes to the cytosol in a manner mechanistically distinct from other Picornaviridae.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data tables have been provided for Figures 1-5 and Supplementary Figures S1-S5.

Article and author information

Author details

  1. Efraín E Rivera-Serrano

    Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1039-7182
  2. Olga González-López

    Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Anshuman Das

    Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Stanley M Lemon

    Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
    For correspondence
    smlemon@med.unc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1450-806X

Funding

National Institute of Allergy and Infectious Diseases (R01-AI103083)

  • Stanley M Lemon

National Institute of Allergy and Infectious Diseases (R01-AI131685)

  • Stanley M Lemon

National Institute of Allergy and Infectious Diseases (T32-AI007151)

  • Efraín E Rivera-Serrano

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Rivera-Serrano et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,231
    views
  • 784
    downloads
  • 73
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Efraín E Rivera-Serrano
  2. Olga González-López
  3. Anshuman Das
  4. Stanley M Lemon
(2019)
Cellular entry and uncoating of naked and quasi-enveloped human hepatoviruses
eLife 8:e43983.
https://doi.org/10.7554/eLife.43983

Share this article

https://doi.org/10.7554/eLife.43983

Further reading

    1. Microbiology and Infectious Disease
    McKenna Harpring, Junghoon Lee ... John V Cox
    Research Article

    Chlamydia trachomatis serovar L2 (Ct), an obligate intracellular bacterium that does not encode FtsZ, divides by a polarized budding process. In the absence of FtsZ, we show that FtsK, a chromosomal translocase, is critical for divisome assembly in Ct. Chlamydial FtsK forms discrete foci at the septum and at the base of the progenitor mother cell, and our data indicate that FtsK foci at the base of the mother cell mark the location of nascent divisome complexes that form at the site where a daughter cell will emerge in the next round of division. The divisome in Ct has a hybrid composition, containing elements of the divisome and elongasome from other bacteria, and FtsK is recruited to nascent divisomes prior to the other chlamydial divisome proteins assayed, including the PBP2 and PBP3 transpeptidases, and MreB and MreC. Knocking down FtsK prevents divisome assembly in Ct and inhibits cell division and septal peptidoglycan synthesis. We further show that MreB does not function like FtsZ and serve as a scaffold for the assembly of the Ct divisome. Rather, MreB is one of the last proteins recruited to the chlamydial divisome, and it is necessary for the formation of septal peptidoglycan rings. Our studies illustrate the critical role of chlamydial FtsK in coordinating divisome assembly and peptidoglycan synthesis in this obligate intracellular bacterial pathogen.

    1. Microbiology and Infectious Disease
    Tao Tang, Weiming Zhong ... Zhipeng Gao
    Research Article

    Saprolegnia parasitica is one of the most virulent oomycete species in freshwater aquatic environments, causing severe saprolegniasis and leading to significant economic losses in the aquaculture industry. Thus far, the prevention and control of saprolegniasis face a shortage of medications. Linalool, a natural antibiotic alternative found in various essential oils, exhibits promising antimicrobial activity against a wide range of pathogens. In this study, the specific role of linalool in protecting S. parasitica infection at both in vitro and in vivo levels was investigated. Linalool showed multifaceted anti-oomycetes potential by both of antimicrobial efficacy and immunomodulatory efficacy. For in vitro test, linalool exhibited strong anti-oomycetes activity and mode of action included: (1) Linalool disrupted the cell membrane of the mycelium, causing the intracellular components leak out; (2) Linalool prohibited ribosome function, thereby inhibiting protein synthesis and ultimately affecting mycelium growth. Surprisingly, meanwhile we found the potential immune protective mechanism of linalool in the in vivo test: (1) Linalool enhanced the complement and coagulation system which in turn activated host immune defense and lysate S. parasitica cells; (2) Linalool promoted wound healing, tissue repair, and phagocytosis to cope with S. parasitica infection; (3) Linalool positively modulated the immune response by increasing the abundance of beneficial Actinobacteriota; (4) Linalool stimulated the production of inflammatory cytokines and chemokines to lyse S. parasitica cells. In all, our findings showed that linalool possessed multifaceted anti-oomycetes potential which would be a promising natural antibiotic alternative to cope with S. parasitica infection in the aquaculture industry.