Cellular entry and uncoating of naked and quasi-enveloped human hepatoviruses

  1. Efraín E Rivera-Serrano
  2. Olga González-López
  3. Anshuman Das
  4. Stanley M Lemon  Is a corresponding author
  1. University of North Carolina at Chapel Hill, United States

Abstract

Many 'non-enveloped' viruses, including hepatitis A virus (HAV), are released non-lytically from infected cells as infectious, quasi-enveloped virions cloaked in host membranes. Quasi-enveloped HAV (eHAV) mediates stealthy cell-to-cell spread within the liver, whereas stable naked virions shed in feces are optimized for environmental transmission. eHAV lacks virus-encoded surface proteins, and how it enters cells is unknown. We show both virion types enter by clathrin- and dynamin-dependent endocytosis, facilitated by integrin β1, and traffic through early and late endosomes. Uncoating of naked virions occurs in late endosomes, whereas eHAV undergoes ALIX-dependent trafficking to lysosomes where the quasi-envelope is enzymatically degraded and uncoating ensues coincident with breaching of endolysosomal membranes. Neither virion requires PLA2G16, a phospholipase essential for entry of other picornaviruses. Thus naked and quasi-enveloped virions enter via similar endocytic pathways, but uncoat in different compartments and release their genomes to the cytosol in a manner mechanistically distinct from other Picornaviridae.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data tables have been provided for Figures 1-5 and Supplementary Figures S1-S5.

Article and author information

Author details

  1. Efraín E Rivera-Serrano

    Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1039-7182
  2. Olga González-López

    Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Anshuman Das

    Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Stanley M Lemon

    Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
    For correspondence
    smlemon@med.unc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1450-806X

Funding

National Institute of Allergy and Infectious Diseases (R01-AI103083)

  • Stanley M Lemon

National Institute of Allergy and Infectious Diseases (R01-AI131685)

  • Stanley M Lemon

National Institute of Allergy and Infectious Diseases (T32-AI007151)

  • Efraín E Rivera-Serrano

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wesley I Sundquist, University of Utah School of Medicine, United States

Version history

  1. Received: November 28, 2018
  2. Accepted: February 22, 2019
  3. Accepted Manuscript published: February 25, 2019 (version 1)
  4. Version of Record published: March 18, 2019 (version 2)

Copyright

© 2019, Rivera-Serrano et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,988
    Page views
  • 741
    Downloads
  • 59
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Efraín E Rivera-Serrano
  2. Olga González-López
  3. Anshuman Das
  4. Stanley M Lemon
(2019)
Cellular entry and uncoating of naked and quasi-enveloped human hepatoviruses
eLife 8:e43983.
https://doi.org/10.7554/eLife.43983

Share this article

https://doi.org/10.7554/eLife.43983

Further reading

    1. Microbiology and Infectious Disease
    Markéta Častorálová, Jakub Sýs ... Tomas Ruml
    Research Article Updated

    For most retroviruses, including HIV, association with the plasma membrane (PM) promotes the assembly of immature particles, which occurs simultaneously with budding and maturation. In these viruses, maturation is initiated by oligomerization of polyprotein precursors. In contrast, several retroviruses, such as Mason-Pfizer monkey virus (M-PMV), assemble in the cytoplasm into immature particles that are transported across the PM. Therefore, protease activation and specific cleavage must not occur until the pre-assembled particle interacts with the PM. This interaction is triggered by a bipartite signal consisting of a cluster of basic residues in the matrix (MA) domain of Gag polyprotein and a myristoyl moiety N-terminally attached to MA. Here, we provide evidence that myristoyl exposure from the MA core and its insertion into the PM occurs in M-PMV. By a combination of experimental methods, we show that this results in a structural change at the C-terminus of MA allowing efficient cleavage of MA from the downstream region of Gag. This suggests that, in addition to the known effect of the myristoyl switch of HIV-1 MA on the multimerization state of Gag and particle assembly, the myristoyl switch may have a regulatory role in initiating sequential cleavage of M-PMV Gag in immature particles.

    1. Microbiology and Infectious Disease
    2. Physics of Living Systems
    Fabien Duveau, Céline Cordier ... Pascal Hersen
    Research Article

    Natural environments of living organisms are often dynamic and multifactorial, with multiple parameters fluctuating over time. To better understand how cells respond to dynamically interacting factors, we quantified the effects of dual fluctuations of osmotic stress and glucose deprivation on yeast cells using microfluidics and time-lapse microscopy. Strikingly, we observed that cell proliferation, survival, and signaling depend on the phasing of the two periodic stresses. Cells divided faster, survived longer, and showed decreased transcriptional response when fluctuations of hyperosmotic stress and glucose deprivation occurred in phase than when the two stresses occurred alternatively. Therefore, glucose availability regulates yeast responses to dynamic osmotic stress, showcasing the key role of metabolic fluctuations in cellular responses to dynamic stress. We also found that mutants with impaired osmotic stress response were better adapted to alternating stresses than wild-type cells, showing that genetic mechanisms of adaptation to a persistent stress factor can be detrimental under dynamically interacting conditions.