1. Chromosomes and Gene Expression
  2. Stem Cells and Regenerative Medicine
Download icon

MicroRNA-deficient mouse embryonic stem cells acquire a functional interferon response

  1. Jeroen Witteveldt
  2. Lisanne I Knol
  3. Sara Macias  Is a corresponding author
  1. University of Edinburgh, United Kingdom
Research Article
  • Cited 11
  • Views 2,627
  • Annotations
Cite this article as: eLife 2019;8:e44171 doi: 10.7554/eLife.44171

Abstract

When mammalian cells detect a viral infection, they initiate a type I Interferon (IFNs) response as part of their innate immune system. This antiviral mechanism is conserved in virtually all cell types, except for embryonic stem cells (ESCs) and oocytes which are intrinsically incapable of producing IFNs. Despite the importance of the IFN response to fight viral infections, the mechanisms regulating this pathway during pluripotency are still unknown. Here we show that, in the absence of miRNAs, ESCs acquire an active IFN response. Proteomic analysis identified MAVS, a central component of the IFN pathway, to be actively silenced by miRNAs and responsible for suppressing IFN expression in ESCs. Furthermore, we show that knocking out a single miRNA, miR-673, restores the antiviral response in ESCs through MAVS regulation. Our findings suggest that the interaction between miR-673 and MAVS acts as a switch to suppress the antiviral IFN during pluripotency and present genetic approaches to enhance their antiviral immunity.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files for Figure 3B are included in the Supplementary Excel File

Article and author information

Author details

  1. Jeroen Witteveldt

    Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Lisanne I Knol

    Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8975-0398
  3. Sara Macias

    Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    sara.maciasribela@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0643-3494

Funding

Wellcome (107665/Z/15/Z)

  • Sara Macias

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Xuetao Cao, Zhejiang University School of Medicine, China

Publication history

  1. Received: December 31, 2018
  2. Accepted: April 22, 2019
  3. Accepted Manuscript published: April 23, 2019 (version 1)
  4. Version of Record published: May 21, 2019 (version 2)

Copyright

© 2019, Witteveldt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,627
    Page views
  • 411
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease
    Michele Felletti et al.
    Research Article

    The ability to regulate DNA replication initiation in response to changing nutrient conditions is an important feature of most cell types. In bacteria, DNA replication is triggered by the initiator protein DnaA, which has long been suggested to respond to nutritional changes; nevertheless, the underlying mechanisms remain poorly understood. Here, we report a novel mechanism that adjusts DnaA synthesis in response to nutrient availability in Caulobacter crescentus. By performing a detailed biochemical and genetic analysis of the dnaA mRNA, we identified a sequence downstream of the dnaA start codon that inhibits DnaA translation elongation upon carbon exhaustion. Our data show that the corresponding peptide sequence, but not the mRNA secondary structure or the codon choice, is critical for this response, suggesting that specific amino acids in the growing DnaA nascent chain tune translational efficiency. Our study provides new insights into DnaA regulation and highlights the importance of translation elongation as a regulatory target. We propose that translation regulation by nascent chain sequences, like the one described, might constitute a general strategy for modulating the synthesis rate of specific proteins under changing conditions.

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Benoit Roch et al.
    Research Article

    We developed a Xrcc4M61R separation of function mouse line to overcome the embryonic lethality of Xrcc4 deficient mice. XRCC4M61R protein does not interact with Xlf, thus obliterating XRCC4-Xlf filament formation while preserving the ability to stabilize DNA Ligase IV. X4M61R mice, which are DNA repair deficient, phenocopy the Nhej1-/- (known as Xlf -/-) setting with a minor impact on the development of the adaptive immune system. The core NHEJ DNA repair factor XRCC4 is therefore not mandatory for V(D)J recombination aside from its role in stabilizing DNA ligase IV. In contrast, Xrcc4M61R mice crossed on Paxx-/-, Nhej1-/-, or Atm-/- backgrounds are severely immunocompromised, owing to aborted V(D)J recombination as in Xlf-Paxx and Xlf-Atm double KO settings. Furthermore, massive apoptosis of post-mitotic neurons causes embryonic lethality of Xrcc4M61R -Nhej1-/- double mutants. These in vivo results reveal new functional interplays between XRCC4 and PAXX, ATM and Xlf in mouse development and provide new insights in the understanding of the clinical manifestations of human XRCC4 deficient condition, in particular its absence of immune deficiency.