Plant-necrotroph co-transcriptome networks illuminate a metabolic battlefield

  1. Wei Zhang
  2. Jason A Corwin
  3. Daniel Harrison Copeland
  4. Julie Feusier
  5. Robert Eshbaugh
  6. David E Cook
  7. Suzi Atwell
  8. Daniel J Kliebenstein  Is a corresponding author
  1. Kansas State University, United States
  2. University of Colorado, United States
  3. University of California, Davis, United States

Abstract

A central goal of studying host-pathogen interaction is to understand how host and pathogen manipulate each other to promote their own fitness in a pathosystem. Co-transcriptomic approaches can simultaneously analyze dual transcriptomes during infection and provide a systematic map of the cross-kingdom communication between two species. Here we used the Arabidopsis-B. cinerea pathosystem to test how plant host and fungal pathogen interact at the transcriptomic level. We assessed the impact of genetic diversity in pathogen and host by utilization of a collection of 96 isolates infection on Arabidopsis wild-type and two mutants with jasmonate or salicylic acid compromised immunities. We identified ten B. cinerea gene co-expression networks (GCNs) that encode known or novel virulence mechanisms. Construction of a dual interaction network by combining four host- and ten pathogen-GCNs revealed potential connections between the fungal and plant GCNs. These co-transcriptome data shed lights on the potential mechanisms underlying host-pathogen interaction.

Article and author information

Author details

  1. Wei Zhang

    Department of Plant Pathology, Kansas State University, Manhattan, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5092-643X
  2. Jason A Corwin

    Department of Ecology and Evolution Biology, University of Colorado, Boulder, United States
    Competing interests
    No competing interests declared.
  3. Daniel Harrison Copeland

    Department of Plant Sciences, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2206-9127
  4. Julie Feusier

    Department of Plant Sciences, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  5. Robert Eshbaugh

    Department of Plant Sciences, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  6. David E Cook

    Department of Plant Pathology, Kansas State University, Manhattan, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2719-4701
  7. Suzi Atwell

    Department of Plant Sciences, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  8. Daniel J Kliebenstein

    Department of Plant Sciences, University of California, Davis, Davis, United States
    For correspondence
    kliebenstein@ucdavis.edu
    Competing interests
    Daniel J Kliebenstein, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5759-3175

Funding

National Science Foundation (IOS 1339125)

  • Daniel J Kliebenstein

U.S. Department of Agriculture (Hatch project number CA-D-PLS-7033-H)

  • Daniel J Kliebenstein

Danish National Research Foundation (DNRF99)

  • Daniel J Kliebenstein

China Scholarship Council (20130624)

  • Wei Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,148
    views
  • 934
    downloads
  • 53
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wei Zhang
  2. Jason A Corwin
  3. Daniel Harrison Copeland
  4. Julie Feusier
  5. Robert Eshbaugh
  6. David E Cook
  7. Suzi Atwell
  8. Daniel J Kliebenstein
(2019)
Plant-necrotroph co-transcriptome networks illuminate a metabolic battlefield
eLife 8:e44279.
https://doi.org/10.7554/eLife.44279

Share this article

https://doi.org/10.7554/eLife.44279