Plant-necrotroph co-transcriptome networks illuminate a metabolic battlefield

  1. Wei Zhang
  2. Jason A Corwin
  3. Daniel Harrison Copeland
  4. Julie Feusier
  5. Robert Eshbaugh
  6. David E Cook
  7. Suzi Atwell
  8. Daniel J Kliebenstein  Is a corresponding author
  1. Kansas State University, United States
  2. University of Colorado, United States
  3. University of California, Davis, United States

Abstract

A central goal of studying host-pathogen interaction is to understand how host and pathogen manipulate each other to promote their own fitness in a pathosystem. Co-transcriptomic approaches can simultaneously analyze dual transcriptomes during infection and provide a systematic map of the cross-kingdom communication between two species. Here we used the Arabidopsis-B. cinerea pathosystem to test how plant host and fungal pathogen interact at the transcriptomic level. We assessed the impact of genetic diversity in pathogen and host by utilization of a collection of 96 isolates infection on Arabidopsis wild-type and two mutants with jasmonate or salicylic acid compromised immunities. We identified ten B. cinerea gene co-expression networks (GCNs) that encode known or novel virulence mechanisms. Construction of a dual interaction network by combining four host- and ten pathogen-GCNs revealed potential connections between the fungal and plant GCNs. These co-transcriptome data shed lights on the potential mechanisms underlying host-pathogen interaction.

Article and author information

Author details

  1. Wei Zhang

    Department of Plant Pathology, Kansas State University, Manhattan, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5092-643X
  2. Jason A Corwin

    Department of Ecology and Evolution Biology, University of Colorado, Boulder, United States
    Competing interests
    No competing interests declared.
  3. Daniel Harrison Copeland

    Department of Plant Sciences, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2206-9127
  4. Julie Feusier

    Department of Plant Sciences, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  5. Robert Eshbaugh

    Department of Plant Sciences, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  6. David E Cook

    Department of Plant Pathology, Kansas State University, Manhattan, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2719-4701
  7. Suzi Atwell

    Department of Plant Sciences, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  8. Daniel J Kliebenstein

    Department of Plant Sciences, University of California, Davis, Davis, United States
    For correspondence
    kliebenstein@ucdavis.edu
    Competing interests
    Daniel J Kliebenstein, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5759-3175

Funding

National Science Foundation (IOS 1339125)

  • Daniel J Kliebenstein

U.S. Department of Agriculture (Hatch project number CA-D-PLS-7033-H)

  • Daniel J Kliebenstein

Danish National Research Foundation (DNRF99)

  • Daniel J Kliebenstein

China Scholarship Council (20130624)

  • Wei Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kenichi Tsuda, Max Planck Institute for Plant Breeding Research, Germany

Version history

  1. Received: December 10, 2018
  2. Accepted: May 8, 2019
  3. Accepted Manuscript published: May 13, 2019 (version 1)
  4. Version of Record published: June 10, 2019 (version 2)

Copyright

© 2019, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,930
    Page views
  • 897
    Downloads
  • 32
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wei Zhang
  2. Jason A Corwin
  3. Daniel Harrison Copeland
  4. Julie Feusier
  5. Robert Eshbaugh
  6. David E Cook
  7. Suzi Atwell
  8. Daniel J Kliebenstein
(2019)
Plant-necrotroph co-transcriptome networks illuminate a metabolic battlefield
eLife 8:e44279.
https://doi.org/10.7554/eLife.44279

Share this article

https://doi.org/10.7554/eLife.44279

Further reading

    1. Plant Biology
    Daniel S Yu, Megan A Outram ... Simon J Williams
    Research Article

    Plant pathogens secrete proteins, known as effectors, that function in the apoplast or inside plant cells to promote virulence. Effector recognition by cell-surface or cytosolic receptors results in the activation of defence pathways and plant immunity. Despite their importance, our general understanding of fungal effector function and recognition by immunity receptors remains poor. One complication often associated with effectors is their high sequence diversity and lack of identifiable sequence motifs precluding prediction of structure or function. In recent years, several studies have demonstrated that fungal effectors can be grouped into structural classes, despite significant sequence variation and existence across taxonomic groups. Using protein X-ray crystallography, we identify a new structural class of effectors hidden within the secreted in xylem (SIX) effectors from Fusarium oxysporum f. sp. lycopersici (Fol). The recognised effectors Avr1 (SIX4) and Avr3 (SIX1) represent the founding members of the Fol dual-domain (FOLD) effector class, with members containing two distinct domains. Using AlphaFold2, we predicted the full SIX effector repertoire of Fol and show that SIX6 and SIX13 are also FOLD effectors, which we validated experimentally for SIX6. Based on structural prediction and comparisons, we show that FOLD effectors are present within three divisions of fungi and are expanded in pathogens and symbionts. Further structural comparisons demonstrate that Fol secretes effectors that adopt a limited number of structural folds during infection of tomato. This analysis also revealed a structural relationship between transcriptionally co-regulated effector pairs. We make use of the Avr1 structure to understand its recognition by the I receptor, which leads to disease resistance in tomato. This study represents an important advance in our understanding of Fol-tomato, and by extension plant–fungal interactions, which will assist in the development of novel control and engineering strategies to combat plant pathogens.

    1. Ecology
    2. Plant Biology
    Jamie Mitchel Waterman, Tristan Michael Cofer ... Matthias Erb
    Research Article

    Volatiles emitted by herbivore-attacked plants (senders) can enhance defenses in neighboring plants (receivers), however, the temporal dynamics of this phenomenon remain poorly studied. Using a custom-built, high-throughput proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) system, we explored temporal patterns of volatile transfer and responses between herbivore-attacked and undamaged maize plants. We found that continuous exposure to natural blends of herbivore-induced volatiles results in clocked temporal response patterns in neighboring plants, characterized by an induced terpene burst at the onset of the second day of exposure. This delayed burst is not explained by terpene accumulation during the night, but coincides with delayed jasmonate accumulation in receiver plants. The delayed burst occurs independent of day:night light transitions and cannot be fully explained by sender volatile dynamics. Instead, it is the result of a stress memory from volatile exposure during the first day and secondary exposure to bioactive volatiles on the second day. Our study reveals that prolonged exposure to natural blends of stress-induced volatiles results in a response that integrates priming and direct induction into a distinct and predictable temporal response pattern. This provides an answer to the long-standing question of whether stress volatiles predominantly induce or prime plant defenses in neighboring plants, by revealing that they can do both in sequence.