Plant-necrotroph co-transcriptome networks illuminate a metabolic battlefield

  1. Wei Zhang
  2. Jason A Corwin
  3. Daniel Harrison Copeland
  4. Julie Feusier
  5. Robert Eshbaugh
  6. David E Cook
  7. Suzi Atwell
  8. Daniel J Kliebenstein  Is a corresponding author
  1. Kansas State University, United States
  2. University of Colorado, United States
  3. University of California, Davis, United States

Abstract

A central goal of studying host-pathogen interaction is to understand how host and pathogen manipulate each other to promote their own fitness in a pathosystem. Co-transcriptomic approaches can simultaneously analyze dual transcriptomes during infection and provide a systematic map of the cross-kingdom communication between two species. Here we used the Arabidopsis-B. cinerea pathosystem to test how plant host and fungal pathogen interact at the transcriptomic level. We assessed the impact of genetic diversity in pathogen and host by utilization of a collection of 96 isolates infection on Arabidopsis wild-type and two mutants with jasmonate or salicylic acid compromised immunities. We identified ten B. cinerea gene co-expression networks (GCNs) that encode known or novel virulence mechanisms. Construction of a dual interaction network by combining four host- and ten pathogen-GCNs revealed potential connections between the fungal and plant GCNs. These co-transcriptome data shed lights on the potential mechanisms underlying host-pathogen interaction.

Article and author information

Author details

  1. Wei Zhang

    Department of Plant Pathology, Kansas State University, Manhattan, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5092-643X
  2. Jason A Corwin

    Department of Ecology and Evolution Biology, University of Colorado, Boulder, United States
    Competing interests
    No competing interests declared.
  3. Daniel Harrison Copeland

    Department of Plant Sciences, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2206-9127
  4. Julie Feusier

    Department of Plant Sciences, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  5. Robert Eshbaugh

    Department of Plant Sciences, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  6. David E Cook

    Department of Plant Pathology, Kansas State University, Manhattan, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2719-4701
  7. Suzi Atwell

    Department of Plant Sciences, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  8. Daniel J Kliebenstein

    Department of Plant Sciences, University of California, Davis, Davis, United States
    For correspondence
    kliebenstein@ucdavis.edu
    Competing interests
    Daniel J Kliebenstein, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5759-3175

Funding

National Science Foundation (IOS 1339125)

  • Daniel J Kliebenstein

U.S. Department of Agriculture (Hatch project number CA-D-PLS-7033-H)

  • Daniel J Kliebenstein

Danish National Research Foundation (DNRF99)

  • Daniel J Kliebenstein

China Scholarship Council (20130624)

  • Wei Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kenichi Tsuda, Max Planck Institute for Plant Breeding Research, Germany

Version history

  1. Received: December 10, 2018
  2. Accepted: May 8, 2019
  3. Accepted Manuscript published: May 13, 2019 (version 1)
  4. Version of Record published: June 10, 2019 (version 2)

Copyright

© 2019, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,989
    views
  • 905
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wei Zhang
  2. Jason A Corwin
  3. Daniel Harrison Copeland
  4. Julie Feusier
  5. Robert Eshbaugh
  6. David E Cook
  7. Suzi Atwell
  8. Daniel J Kliebenstein
(2019)
Plant-necrotroph co-transcriptome networks illuminate a metabolic battlefield
eLife 8:e44279.
https://doi.org/10.7554/eLife.44279

Share this article

https://doi.org/10.7554/eLife.44279

Further reading

    1. Plant Biology
    Stephen Gonzalez, Joseph Swift ... Joseph R Ecker
    Short Report

    Soil-free assays that induce water stress are routinely used to investigate drought responses in the plant Arabidopsis thaliana. Due to their ease of use, the research community often relies on polyethylene glycol (PEG), mannitol, and salt (NaCl) treatments to reduce the water potential of agar media, and thus induce drought conditions in the laboratory. However, while these types of stress can create phenotypes that resemble those of water deficit experienced by soil-grown plants, it remains unclear how these treatments compare at the transcriptional level. Here, we demonstrate that these different methods of lowering water potential elicit both shared and distinct transcriptional responses in Arabidopsis shoot and root tissue. When we compared these transcriptional responses to those found in Arabidopsis roots subject to vermiculite drying, we discovered many genes induced by vermiculite drying were repressed by low water potential treatments on agar plates (and vice versa). Additionally, we also tested another method for lowering water potential of agar media. By increasing the nutrient content and tensile strength of agar, we show the ‘hard agar’ (HA) treatment can be leveraged as a high-throughput assay to investigate natural variation in Arabidopsis growth responses to low water potential.

    1. Plant Biology
    Zhao-Ying Zeng, Jun-Rong Huang ... Han-Bo Zhang
    Research Article

    Microbes strongly affect invasive plant growth. However, how phyllosphere and rhizosphere soil microbes distinctively affect seedling mortality and growth of invaders across ontogeny under varying soil nutrient levels remains unclear. In this study, we used the invader Ageratina adenophora to evaluate these effects. We found that higher proportions of potential pathogens were detected in core microbial taxa in leaf litter than rhizosphere soil and thus leaf inoculation had more adverse effects on seed germination and seedling survival than soil inoculation. Microbial inoculation at different growth stages altered the microbial community and functions of seedlings, and earlier inoculation had a more adverse effect on seedling survival and growth. The soil nutrient level did not affect microbe-mediated seedling growth and the relative abundance of the microbial community and functions involved in seedling growth. The effects of some microbial genera on seedling survival are distinct from those on growth. Moreover, the A. adenophora seedling-killing effects of fungal strains isolated from dead seedlings by non-sterile leaf inoculation exhibited significant phylogenetic signals, by which strains of Allophoma and Alternaria generally caused high seedling mortality. Our study stresses the essential role of A. adenophora litter microbes in population establishment by regulating seedling density and growth.