A statistical framework to assess cross-frequency coupling while accounting for confounding analysis effects

  1. Jessica K Nadalin
  2. Louis-Emmanuel Martinet
  3. Ethan B Blackwood
  4. Meng-Chen Lo
  5. Alik S Widge
  6. Sydney S Cash
  7. Uri T Eden
  8. Mark A Kramer  Is a corresponding author
  1. Boston University, United States
  2. Massachusetts General Hospital, United States
  3. University of Minnesota, United States

Abstract

Cross frequency coupling (CFC) is emerging as a fundamental feature of brain activity, correlated with brain function and dysfunction. Many different types of CFC have been identified through application of numerous data analysis methods, each developed to characterize a specific CFC type. Choosing an inappropriate method weakens statistical power and introduces opportunities for confounding effects. To address this, we propose a statistical modeling framework to estimate high frequency amplitude as a function of both the low frequency amplitude and low frequency phase; the result is a measure of phase-amplitude coupling that accounts for changes in the low frequency amplitude. We show in simulations that the proposed method successfully detects CFC between the low frequency phase or amplitude and the high frequency amplitude, and outperforms an existing method in biologically-motivated examples. Applying the method to in vivo data, we illustrate how CFC evolves during seizure and is affected by electrical stimuli.

Data availability

In vivo human data available at https://github.com/Eden-Kramer-Lab/GLM-CFCIn vivo rat data available at https://github.com/tne-lab/cl-example-data

Article and author information

Author details

  1. Jessica K Nadalin

    Department of Mathematics and Statistics, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Louis-Emmanuel Martinet

    Department of Neurology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ethan B Blackwood

    Department of Psychiatry, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3049-0640
  4. Meng-Chen Lo

    Department of Psychiatry, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3913-3233
  5. Alik S Widge

    Department of Psychiatry, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8510-341X
  6. Sydney S Cash

    Department of Neurology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Uri T Eden

    Department of Mathematics and Statistics, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Mark A Kramer

    Department of Mathematics and Statistics, Boston University, Boston, United States
    For correspondence
    mak@bu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9979-7202

Funding

National Science Foundation (NSF DMS #1451384)

  • Jessica K Nadalin
  • Mark A Kramer

National Science Foundation (GRFP)

  • Jessica K Nadalin

National Institutes of Health (R21 MH109722)

  • Alik S Widge

National Institutes of Health (R01 EB026938)

  • Alik S Widge
  • Uri T Eden
  • Mark A Kramer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Frances K Skinner, Krembil Research Institute, University Health Network, Canada

Ethics

Animal experimentation: The animal experimentation received IACUC approval from the University of Minnesota (IACUC Protocol # 1806-36024A).

Human subjects: All patients were enrolled after informed consent, and consent to publish, was obtained and approval was granted by local Institutional Review Boards at Massachusetts General Hospital and Brigham Women's Hospitals (Partners Human Research Committee), and at Boston University according to National Institutes of Health guidelines (IRB Protocol # 1558X).

Version history

  1. Received: December 12, 2018
  2. Accepted: October 6, 2019
  3. Accepted Manuscript published: October 16, 2019 (version 1)
  4. Version of Record published: October 30, 2019 (version 2)

Copyright

© 2019, Nadalin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,155
    views
  • 590
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jessica K Nadalin
  2. Louis-Emmanuel Martinet
  3. Ethan B Blackwood
  4. Meng-Chen Lo
  5. Alik S Widge
  6. Sydney S Cash
  7. Uri T Eden
  8. Mark A Kramer
(2019)
A statistical framework to assess cross-frequency coupling while accounting for confounding analysis effects
eLife 8:e44287.
https://doi.org/10.7554/eLife.44287

Share this article

https://doi.org/10.7554/eLife.44287

Further reading

    1. Neuroscience
    Ivan Tomić, Paul M Bays
    Research Article

    Probing memory of a complex visual image within a few hundred milliseconds after its disappearance reveals significantly greater fidelity of recall than if the probe is delayed by as little as a second. Classically interpreted, the former taps into a detailed but rapidly decaying visual sensory or ‘iconic’ memory (IM), while the latter relies on capacity-limited but comparatively stable visual working memory (VWM). While iconic decay and VWM capacity have been extensively studied independently, currently no single framework quantitatively accounts for the dynamics of memory fidelity over these time scales. Here, we extend a stationary neural population model of VWM with a temporal dimension, incorporating rapid sensory-driven accumulation of activity encoding each visual feature in memory, and a slower accumulation of internal error that causes memorized features to randomly drift over time. Instead of facilitating read-out from an independent sensory store, an early cue benefits recall by lifting the effective limit on VWM signal strength imposed when multiple items compete for representation, allowing memory for the cued item to be supplemented with information from the decaying sensory trace. Empirical measurements of human recall dynamics validate these predictions while excluding alternative model architectures. A key conclusion is that differences in capacity classically thought to distinguish IM and VWM are in fact contingent upon a single resource-limited WM store.

    1. Neuroscience
    Emilio Salinas, Bashirul I Sheikh
    Insight

    Our ability to recall details from a remembered image depends on a single mechanism that is engaged from the very moment the image disappears from view.