Fast and flexible sequence induction in spiking neural networks via rapid excitability changes

  1. Rich Pang  Is a corresponding author
  2. Adrienne L Fairhall
  1. University of Washington, United States

Abstract

Cognitive flexibility likely depends on modulation of the dynamics underlying how biological neural networks process information. While dynamics can be reshaped by gradually modifying connectivity, less is known about mechanisms operating on faster timescales. A compelling entrypoint to this problem is the observation that exploratory behaviors can rapidly cause selective hippocampal sequences to 'replay' during rest. Using a spiking network model, we asked whether simplified replay could arise from three biological components: fixed recurrent connectivity; stochastic 'gating' inputs; and rapid gating input scaling via long-term potentiation of intrinsic excitability (LTP-IE). Indeed, these enabled both forward and reverse replay of recent sensorimotor-evoked sequences, despite unchanged recurrent weights. LTP-IE 'tags' specific neurons with increased spiking probability under gating input, and ordering is reconstructed from recurrent connectivity. We further show how LTP-IE can implement temporary stimulus-response mappings. This elucidates a novel combination of mechanisms that might play a role in rapid cognitive flexibility.

Article and author information

Author details

  1. Rich Pang

    Physiology and Biophysics Department, University of Washington, Seattle, United States
    For correspondence
    rpang@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2644-6110
  2. Adrienne L Fairhall

    Physiology and Biophysics Department, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (R01DC013693)

  • Adrienne L Fairhall

Simons Foundation (Collaboration for the Global Brain)

  • Adrienne L Fairhall

University of Washington (Computational Neuroscience Training Grant)

  • Rich Pang

Washington Research Foundation (UW Institute for Neuroengineering)

  • Adrienne L Fairhall

National Institutes of Health (NIH) (R01NS104925)

  • Adrienne L Fairhall

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Pang & Fairhall

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,478
    views
  • 376
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rich Pang
  2. Adrienne L Fairhall
(2019)
Fast and flexible sequence induction in spiking neural networks via rapid excitability changes
eLife 8:e44324.
https://doi.org/10.7554/eLife.44324

Share this article

https://doi.org/10.7554/eLife.44324

Further reading

    1. Computational and Systems Biology
    Dylan C Sarver, Muzna Saqib ... G William Wong
    Research Article

    Organ function declines with age, and large-scale transcriptomic analyses have highlighted differential aging trajectories across tissues. The mechanism underlying shared and organ-selective functional changes across the lifespan, however, still remains poorly understood. Given the central role of mitochondria in powering cellular processes needed to maintain tissue health, we therefore undertook a systematic assessment of respiratory activity across 33 different tissues in young (2.5 months) and old (20 months) mice of both sexes. Our high-resolution mitochondrial respiration atlas reveals: (1) within any group of mice, mitochondrial activity varies widely across tissues, with the highest values consistently seen in heart, brown fat, and kidney; (2) biological sex is a significant but minor contributor to mitochondrial respiration, and its contributions are tissue-specific, with major differences seen in the pancreas, stomach, and white adipose tissue; (3) age is a dominant factor affecting mitochondrial activity, especially across most brain regions, different fat depots, skeletal muscle groups, eyes, and different regions of the gastrointestinal tract; (4) age effects can be sex- and tissue-specific, with some of the largest effects seen in pancreas, heart, adipose tissue, and skeletal muscle; and (5) while aging alters the functional trajectories of mitochondria in a majority of tissues, some are remarkably resilient to age-induced changes. Altogether, our data provide the most comprehensive compendium of mitochondrial respiration and illuminate functional signatures of aging across diverse tissues and organ systems.

    1. Computational and Systems Biology
    Alessandro Bitto
    Insight

    Measuring mitochondrial respiration in frozen tissue samples provides the first comprehensive atlas of how aging affects mitochondrial function in mice.