Transcriptomic and epigenetic regulation of hair cell regeneration in the mouse utricle and its potentiation by Atoh1

  1. Hsin-I Jen
  2. Matthew C Hill
  3. Litao Tao
  4. Kuanwei Sheng
  5. Wenjian Cao
  6. Hongyuan Zhang
  7. Haoze V Yu
  8. Juan Llamas
  9. Chenghang Zong
  10. James F Martin
  11. Neil Segil
  12. Andrew K Groves  Is a corresponding author
  1. Baylor College of Medicine, United States
  2. University of Southern California, United States

Abstract

The mammalian cochlea loses its ability to regenerate new hair cells prior to the onset of hearing. In contrast, the adult vestibular system can produce new hair cells in response to damage, or by reprogramming of supporting cells with the hair cell transcription factor Atoh1. We used RNA-seq and ATAC-seq to probe the transcriptional and epigenetic responses of utricle supporting cells to damage and Atoh1 transduction. We show that the improved regenerative response of the utricle correlates with a more accessible chromatin structure in utricle supporting cells compared to their cochlear counterparts. We also provide evidence that Atoh1 transduction of supporting cells is able to promote increased transcriptional accessibility of some hair cell genes. Our study offers a possible explanation for regenerative differences between sensory organs of the inner ear, but shows that additional factors to Atoh1 may be required for optimal reprogramming of hair cell fate.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE122732 and GSE121610

The following data sets were generated

Article and author information

Author details

  1. Hsin-I Jen

    Program in Developmental Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Matthew C Hill

    Program in Developmental Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Litao Tao

    Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kuanwei Sheng

    Program Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Wenjian Cao

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Hongyuan Zhang

    Department of Neuroscience, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Haoze V Yu

    Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Juan Llamas

    Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Chenghang Zong

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. James F Martin

    Program in Developmental Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Neil Segil

    Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Andrew K Groves

    Program in Developmental Biology, Baylor College of Medicine, Houston, United States
    For correspondence
    akgroves@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0784-7998

Funding

National Cancer Institute (CA125123)

  • Andrew K Groves

Vivian L Smith Foundation and MacDonald Research Fund Award (16RDM001)

  • James F Martin

Transatlantic Network of Excellence Award LeDucq Foundation Transatlantic Networks of Excellence in Cardiovascular Research (14CVD01)

  • James F Martin

National Institute on Deafness and Other Communication Disorders (RO1DC014832)

  • Andrew K Groves

National Institute on Deafness and Other Communication Disorders (RO1DC015829)

  • Neil Segil

Eunice Kennedy Shriver National Institute of Child Health and Human Development (RO1DE023177)

  • James F Martin

National Heart, Lung, and Blood Institute (RO1HL127717)

  • James F Martin

National Heart, Lung, and Blood Institute (RO1HL130804)

  • James F Martin

National Heart, Lung, and Blood Institute (RO1HL118761)

  • James F Martin

National Institutes of Health (DP2EB020399)

  • Chenghang Zong

National Heart, Lung, and Blood Institute (F31HL136065)

  • Matthew C Hill

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (AN-4956) of Baylor College of Medicine

Copyright

© 2019, Jen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,219
    views
  • 720
    downloads
  • 49
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hsin-I Jen
  2. Matthew C Hill
  3. Litao Tao
  4. Kuanwei Sheng
  5. Wenjian Cao
  6. Hongyuan Zhang
  7. Haoze V Yu
  8. Juan Llamas
  9. Chenghang Zong
  10. James F Martin
  11. Neil Segil
  12. Andrew K Groves
(2019)
Transcriptomic and epigenetic regulation of hair cell regeneration in the mouse utricle and its potentiation by Atoh1
eLife 8:e44328.
https://doi.org/10.7554/eLife.44328

Share this article

https://doi.org/10.7554/eLife.44328

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.