Abstract

Loss of sensory hair cells leads to deafness and balance deficiencies. In contrast to mammalian hair cells, zebrafish ear and lateral line hair cells regenerate from poorly characterized support cells. Equally ill-defined is the gene regulatory network underlying the progression of support cells to differentiated hair cells. scRNA-Seq of lateral line organs uncovered five different support cell types, including quiescent and activated stem cells. Ordering of support cells along a developmental trajectory identified self-renewing cells and genes required for hair cell differentiation. scRNA-Seq analyses of fgf3 mutants, in which hair cell regeneration is increased, demonstrates that Fgf and Notch signaling inhibit proliferation of support cells in parallel by inhibiting Wnt signaling. Our scRNA-Seq analyses set the foundation for mechanistic studies of sensory organ regeneration and is crucial for identifying factors to trigger hair cell production in mammals. The data is searchable and publicly accessible via a web-based interface.

Data availability

BAM files and count matrices produced by Cell Ranger have been deposited in the Gene Expression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo (accession no. GSE123241)

The following data sets were generated

Article and author information

Author details

  1. Mark E Lush

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel C Diaz

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nina Koenecke

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sungmin Baek

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Helena Boldt

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Madeleine K St Peter

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Tatiana Gaitan-Escudero

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Andres Romero-Carvajal

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2570-1749
  9. Elisabeth M Busch-Nentwich

    Wellcome Sanger Institute, Hinxton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6450-744X
  10. Anoja G Perera

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Kathryn E Hall

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Allison Peak

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Jeffrey S Haug

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Tatjana Piotrowski

    Stowers Institute for Medical Research, Kansas City, United States
    For correspondence
    pio@stowers.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8098-2574

Funding

National Institute on Deafness and Other Communication Disorders (1R01DC015488-01A1)

  • Tatjana Piotrowski

Hearing Health Foundation

  • Tatjana Piotrowski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care use committee (IACUC) protocol (#2017-0176) of the Stowers Institute for Medical Research.

Copyright

© 2019, Lush et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,460
    views
  • 1,250
    downloads
  • 128
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mark E Lush
  2. Daniel C Diaz
  3. Nina Koenecke
  4. Sungmin Baek
  5. Helena Boldt
  6. Madeleine K St Peter
  7. Tatiana Gaitan-Escudero
  8. Andres Romero-Carvajal
  9. Elisabeth M Busch-Nentwich
  10. Anoja G Perera
  11. Kathryn E Hall
  12. Allison Peak
  13. Jeffrey S Haug
  14. Tatjana Piotrowski
(2019)
scRNA-Seq reveals distinct stem cell populations that drive hair cell regeneration after loss of Fgf and Notch signaling
eLife 8:e44431.
https://doi.org/10.7554/eLife.44431

Share this article

https://doi.org/10.7554/eLife.44431

Further reading

    1. Cell Biology
    2. Developmental Biology
    Yi Sun, Zhe Chen ... Chengtian Zhao
    Short Report

    How cells regulate the size of their organelles remains a fundamental question in cell biology. Cilia, with their simple structure and surface localization, provide an ideal model for investigating organelle size control. However, most studies on cilia length regulation are primarily performed on several single-celled organisms. In contrast, the mechanism of length regulation in cilia across diverse cell types within multicellular organisms remains a mystery. Similar to humans, zebrafish contain diverse types of cilia with variable lengths. Taking advantage of the transparency of zebrafish embryos, we conducted a comprehensive investigation into intraflagellar transport (IFT), an essential process for ciliogenesis. By generating a transgenic line carrying Ift88-GFP transgene, we observed IFT in multiple types of cilia with varying lengths. Remarkably, cilia exhibited variable IFT speeds in different cell types, with longer cilia exhibiting faster IFT speeds. This increased IFT speed in longer cilia is likely not due to changes in common factors that regulate IFT, such as motor selection, BBSome proteins, or tubulin modification. Interestingly, longer cilia in the ear cristae tend to form larger IFT compared to shorter spinal cord cilia. Reducing the size of IFT particles by knocking down Ift88 slowed IFT speed and resulted in the formation of shorter cilia. Our study proposes an intriguing model of cilia length regulation via controlling IFT speed through the modulation of the size of the IFT complex. This discovery may provide further insights into our understanding of how organelle size is regulated in higher vertebrates.

    1. Developmental Biology
    Bingbing Wu, Chenghong Long ... Chao Liu
    Research Article

    The structural integrity of the sperm is crucial for male fertility, defects in sperm head-tail linkage and flagellar axoneme are associated with acephalic spermatozoa syndrome (ASS) and the multiple morphological abnormalities of the sperm flagella (MMAF). Notably, impaired head-tail coupling apparatus (HTCA) often accompanies defects in the flagellum structure, however, the molecular mechanisms underlying this phenomenon remain elusive. Here, we identified an evolutionarily conserved coiled-coil domain-containing (CCDC) protein, CCDC113, and found the disruption of CCDC113 produced spermatozoa with disorganized sperm flagella and HTCA, which caused male infertility. Further analysis revealed that CCDC113 could bind to CFAP57 and CFAP91, and function as an adaptor protein for the connection of radial spokes, nexin-dynein regulatory complex (N-DRC), and doublet microtubules (DMTs) in the sperm axoneme. Moreover, CCDC113 was identified as a structural component of HTCA, collaborating with SUN5 and CENTLEIN to connect sperm head to tail during spermiogenesis. Together, our studies reveal that CCDC113 serve as a critical hub for sperm axoneme and HTCA stabilization in mice, providing insights into the potential pathogenesis of infertility associated with human CCDC113 mutations.