1. Developmental Biology
  2. Stem Cells and Regenerative Medicine
Download icon

scRNA-Seq reveals distinct stem cell populations that drive hair cell regeneration after loss of Fgf and Notch signaling

Research Article
  • Cited 44
  • Views 7,519
  • Annotations
Cite this article as: eLife 2019;8:e44431 doi: 10.7554/eLife.44431

Abstract

Loss of sensory hair cells leads to deafness and balance deficiencies. In contrast to mammalian hair cells, zebrafish ear and lateral line hair cells regenerate from poorly characterized support cells. Equally ill-defined is the gene regulatory network underlying the progression of support cells to differentiated hair cells. scRNA-Seq of lateral line organs uncovered five different support cell types, including quiescent and activated stem cells. Ordering of support cells along a developmental trajectory identified self-renewing cells and genes required for hair cell differentiation. scRNA-Seq analyses of fgf3 mutants, in which hair cell regeneration is increased, demonstrates that Fgf and Notch signaling inhibit proliferation of support cells in parallel by inhibiting Wnt signaling. Our scRNA-Seq analyses set the foundation for mechanistic studies of sensory organ regeneration and is crucial for identifying factors to trigger hair cell production in mammals. The data is searchable and publicly accessible via a web-based interface.

Data availability

BAM files and count matrices produced by Cell Ranger have been deposited in the Gene Expression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo (accession no. GSE123241)

The following data sets were generated

Article and author information

Author details

  1. Mark E Lush

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel C Diaz

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nina Koenecke

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sungmin Baek

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Helena Boldt

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Madeleine K St Peter

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Tatiana Gaitan-Escudero

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Andres Romero-Carvajal

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2570-1749
  9. Elisabeth M Busch-Nentwich

    Wellcome Sanger Institute, Hinxton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6450-744X
  10. Anoja G Perera

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Kathryn E Hall

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Allison Peak

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Jeffrey S Haug

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Tatjana Piotrowski

    Stowers Institute for Medical Research, Kansas City, United States
    For correspondence
    pio@stowers.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8098-2574

Funding

National Institute on Deafness and Other Communication Disorders (1R01DC015488-01A1)

  • Tatjana Piotrowski

Hearing Health Foundation

  • Tatjana Piotrowski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care use committee (IACUC) protocol (#2017-0176) of the Stowers Institute for Medical Research.

Reviewing Editor

  1. Tanya T Whitfield, University of Sheffield, United Kingdom

Publication history

  1. Received: December 15, 2018
  2. Accepted: January 24, 2019
  3. Accepted Manuscript published: January 25, 2019 (version 1)
  4. Version of Record published: February 5, 2019 (version 2)
  5. Version of Record updated: April 17, 2019 (version 3)

Copyright

© 2019, Lush et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,519
    Page views
  • 950
    Downloads
  • 44
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Yelena Y Bernadskaya et al.
    Research Article

    Physiological and pathological morphogenetic events involve a wide array of collective movements, suggesting that multicellular arrangements confer biochemical and biomechanical properties contributing to tissue scale organization. The Ciona cardiopharyngeal progenitors provide the simplest model of collective cell migration, with cohesive bilateral cell pairs polarized along the leader-trailer migration path while moving between the ventral epidermis and trunk endoderm. We use the Cellular Potts Model to computationally probe the distributions of forces consistent with shapes and collective polarity of migrating cell pairs. Combining computational modeling, confocal microscopy, and molecular perturbations, we identify cardiopharyngeal progenitors as the simplest cell collective maintaining supracellular polarity with differential distributions of protrusive forces, cell-matrix adhesion, and myosin-based retraction forces along the leader-trailer axis. 4D simulations and experimental observations suggest that cell-cell communication helps establish a hierarchy to align collective polarity with the direction of migration, as observed with three or more cells in silico and in vivo. Our approach reveals emerging properties of the migrating collective: cell pairs are more persistent, migrating longer distances, and presumably with higher accuracy. Simulations suggest that cell pairs can overcome mechanical resistance of the trunk endoderm more effectively when they are polarized collectively. We propose that polarized supracellular organization of cardiopharyngeal progenitors confers emergent physical properties that determine mechanical interactions with their environment during morphogenesis.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Hourinaz Behesti et al.
    Research Article

    Brain development is regulated by conserved transcriptional programs across species, but little is known about divergent mechanisms that create species-specific characteristics. Among brain regions, human cerebellar histogenesis differs in complexity compared with non-human primates and rodents, making it important to develop methods to generate human cerebellar neurons that closely resemble those in the developing human cerebellum. We report a rapid protocol for the derivation of the human ATOH1 lineage, the precursor of excitatory cerebellar neurons, from human pluripotent stem cells (hPSC). Upon transplantation into juvenile mice, hPSC-derived cerebellar granule cells migrated along glial fibers and integrated into the cerebellar cortex. By Translational Ribosome Affinity Purification-seq, we identified an unexpected temporal shift in the expression of RBFOX3 (NeuN) and NEUROD1, which are classically associated with differentiated neurons, in the human outer external granule layer. This molecular divergence may enable the protracted development of the human cerebellum compared to mice.