Enzyme activity and selectivity filter stability of ancient TRPM2 channels were simultaneously lost in early vertebrates

  1. Iordan Iordanov
  2. Balázs Tóth
  3. András Szöllösi
  4. László Csanády  Is a corresponding author
  1. Semmelweis University, Hungary

Abstract

Transient Receptor Potential Melastatin 2 (TRPM2) is a cation channel important for the immune response, insulin secretion, and body temperature regulation. It is activated by cytosolic ADP ribose (ADPR), and contains a nudix-type motif 9 (NUDT9)-homology (NUDT9-H) domain homologous to ADPR phosphohydrolases (ADPRases). Human TRPM2 (hsTRPM2) is catalytically inactive due to mutations in the conserved Nudix box sequence. Here we show that TRPM2 Nudix motifs are canonical in all invertebrates, but vestigial in vertebrates. Correspondingly, TRPM2 of the cnidarian Nematostella vectensis (nvTRPM2) and the choanoflagellate Salpingoeca rosetta (srTRPM2) are active ADPRases. Disruption of ADPRase activity fails to affect nvTRPM2 channel currents, reporting a catalytic cycle uncoupled from gating. Furthermore, pore sequence substitutions responsible for inactivation of hsTRPM2 also appeared in vertebrates. Correspondingly, zebrafish (Danio rerio) TRPM2 (drTRPM2) and hsTRPM2 channels inactivate, but srTRPM2 and nvTRPM2 currents are stable. Thus, catalysis and pore stability were lost simultaneously in vertebrate TRPM2 channels.

Data availability

All data generated or analyzed during this study are included in the manuscript figures and supplementary figures. All methods are described in detail in Materials and Methods. Source data files are attached for all figures.

Article and author information

Author details

  1. Iordan Iordanov

    Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8251-5857
  2. Balázs Tóth

    Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1257-2597
  3. András Szöllösi

    Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
    Competing interests
    No competing interests declared.
  4. László Csanády

    Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
    For correspondence
    csanady.laszlo@med.semmelweis-univ.hu
    Competing interests
    László Csanády, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6547-5889

Funding

Howard Hughes Medical Institute (International Early Career Scientist Award)

  • László Csanády

Magyar Tudományos Akadémia (LP2017-14/2017)

  • László Csanády

Ministry of Human Capacities of Hungary (ÚNKP 17-4-I-SE-61)

  • Balázs Tóth

Magyar Tudományos Akadémia (Bolyai Research Fellowship)

  • Balázs Tóth

Ministry of Human Capacities of Hungary (ÚNKP-FIKP)

  • László Csanády

Ministry of Human Capacities of Hungary (ÚNKP 18-4-SE-132)

  • Balázs Tóth

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of Semmelweis University (last approved 06-30-2016, expiration 06-30-2021).

Reviewing Editor

  1. Leon D Islas, Universidad Nacional Autónoma de México, Mexico

Publication history

  1. Received: December 19, 2018
  2. Accepted: April 1, 2019
  3. Accepted Manuscript published: April 2, 2019 (version 1)
  4. Version of Record published: April 12, 2019 (version 2)

Copyright

© 2019, Iordanov et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,217
    Page views
  • 206
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Iordan Iordanov
  2. Balázs Tóth
  3. András Szöllösi
  4. László Csanády
(2019)
Enzyme activity and selectivity filter stability of ancient TRPM2 channels were simultaneously lost in early vertebrates
eLife 8:e44556.
https://doi.org/10.7554/eLife.44556

Further reading

    1. Structural Biology and Molecular Biophysics
    Maicon Landim-Vieira et al.
    Research Article Updated

    Phosphorylation and acetylation of sarcomeric proteins are important for fine-tuning myocardial contractility. Here, we used bottom-up proteomics and label-free quantification to identify novel post-translational modifications (PTMs) on β-myosin heavy chain (β-MHC) in normal and failing human heart tissues. We report six acetylated lysines and two phosphorylated residues: K34-Ac, K58-Ac, S210-P, K213-Ac, T215-P, K429-Ac, K951-Ac, and K1195-Ac. K951-Ac was significantly reduced in both ischemic and nonischemic failing hearts compared to nondiseased hearts. Molecular dynamics (MD) simulations show that K951-Ac may impact stability of thick filament tail interactions and ultimately myosin head positioning. K58-Ac altered the solvent-exposed SH3 domain surface – known for protein–protein interactions – but did not appreciably change motor domain conformation or dynamics under conditions studied. Together, K213-Ac/T215-P altered loop 1’s structure and dynamics – known to regulate ADP-release, ATPase activity, and sliding velocity. Our study suggests that β-MHC acetylation levels may be influenced more by the PTM location than the type of heart disease since less protected acetylation sites are reduced in both heart failure groups. Additionally, these PTMs have potential to modulate interactions between β-MHC and other regulatory sarcomeric proteins, ADP-release rate of myosin, flexibility of the S2 region, and cardiac myofilament contractility in normal and failing hearts.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Atefeh Rafiei et al.
    Research Article Updated

    Doublecortin (DCX) is a microtubule (MT)-associated protein that regulates MT structure and function during neuronal development and mutations in DCX lead to a spectrum of neurological disorders. The structural properties of MT-bound DCX that explain these disorders are incompletely determined. Here, we describe the molecular architecture of the DCX–MT complex through an integrative modeling approach that combines data from X-ray crystallography, cryo-electron microscopy, and a high-fidelity chemical crosslinking method. We demonstrate that DCX interacts with MTs through its N-terminal domain and induces a lattice-dependent self-association involving the C-terminal structured domain and its disordered tail, in a conformation that favors an open, domain-swapped state. The networked state can accommodate multiple different attachment points on the MT lattice, all of which orient the C-terminal tails away from the lattice. As numerous disease mutations cluster in the C-terminus, and regulatory phosphorylations cluster in its tail, our study shows that lattice-driven self-assembly is an important property of DCX.