Stress-mediated exit to quiescence restricted by increasing persistence in CDK4/6 activation

  1. Hee Won Yang  Is a corresponding author
  2. Steven D Cappell
  3. Ariel Jaimovich
  4. Chad Liu
  5. Mingyu Chung
  6. Leighton H Daigh
  7. Lindsey R Pack
  8. Yilin Fan
  9. Sergi Regot
  10. Markus Covert
  11. Tobias Meyer  Is a corresponding author
  1. Columbia University, United States
  2. NIH, United States
  3. Stanford University, United States
  4. Johns Hopkins University School of Medicine, United States

Abstract

Mammalian cells typically start the cell-cycle entry program by activating cyclin-dependent protein kinase 4/6 (CDK4/6). CDK4/6 activity is clinically relevant as mutations, deletions, and amplifications that increase CDK4/6 activity contribute to the progression of many cancers. However, when CDK4/6 is activated relative to CDK2 remained incompletely understood. Here we developed a reporter system to simultaneously monitor CDK4/6 and CDK2 activities in single cells and found that CDK4/6 activity increases rapidly before CDK2 activity gradually increases, and that CDK4/6 activity can be active after mitosis or inactive for variable time periods. Markedly, stress signals in G1 can rapidly inactivate CDK4/6 to return cells to quiescence but with reduced probability as cells approach S phase. Together, our study reveals a regulation of G1 length by temporary inactivation of CDK4/6 activity after mitosis, and a progressively increasing persistence in CDK4/6 activity that restricts cells from returning to quiescence as cells approach S phase.

Data availability

Source data files have been provided for Figures 1, 2, 3, 4, Figure 1-figure supplement 2 and 4. Source data for Figure 2-figure supplement 2 and Figure 3-figure supplement 1 will be made available online with the final version of record.

Article and author information

Author details

  1. Hee Won Yang

    Department of Pathology and Cell Biology, Columbia University, New York, United States
    For correspondence
    hy2602@cumc.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Steven D Cappell

    NCI, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ariel Jaimovich

    Department of Chemical and Systems Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Chad Liu

    Department of Chemical and Systems Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mingyu Chung

    Chemical and Systems Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Leighton H Daigh

    Department of Chemical and Systems Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Lindsey R Pack

    Department of Chemical and Systems Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yilin Fan

    Department of Chemical and Systems Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sergi Regot

    Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9786-3897
  10. Markus Covert

    Bioengineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5993-8912
  11. Tobias Meyer

    Department of Chemical and Systems Biology, Stanford University, Stanford, United States
    For correspondence
    tobias1@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4339-3804

Funding

National Institute of General Medical Sciences (GM127026)

  • Tobias Meyer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sander Van den Heuvel, Utrecht University, Netherlands

Version history

  1. Received: December 20, 2018
  2. Accepted: April 2, 2020
  3. Accepted Manuscript published: April 7, 2020 (version 1)
  4. Version of Record published: May 11, 2020 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 5,125
    views
  • 743
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hee Won Yang
  2. Steven D Cappell
  3. Ariel Jaimovich
  4. Chad Liu
  5. Mingyu Chung
  6. Leighton H Daigh
  7. Lindsey R Pack
  8. Yilin Fan
  9. Sergi Regot
  10. Markus Covert
  11. Tobias Meyer
(2020)
Stress-mediated exit to quiescence restricted by increasing persistence in CDK4/6 activation
eLife 9:e44571.
https://doi.org/10.7554/eLife.44571

Share this article

https://doi.org/10.7554/eLife.44571

Further reading

    1. Cell Biology
    Elizabeth A Beath, Cynthia Bailey ... Francis J McNally
    Research Article

    Fertilization occurs before the completion of oocyte meiosis in the majority of animal species and sperm contents move long distances within the zygotes of mouse and C. elegans. If incorporated into the meiotic spindle, paternal chromosomes could be expelled into a polar body resulting in lethal monosomy. Through live imaging of fertilization in C. elegans, we found that the microtubule disassembling enzymes, katanin and kinesin-13 limit long-range movement of sperm contents and that maternal ataxin-2 maintains paternal DNA and paternal mitochondria as a cohesive unit that moves together. Depletion of katanin or double depletion of kinesin-13 and ataxin-2 resulted in the capture of the sperm contents by the meiotic spindle. Thus limiting movement of sperm contents and maintaining cohesion of sperm contents within the zygote both contribute to preventing premature interaction between maternal and paternal genomes.

    1. Cell Biology
    Joanne Tung, Lei Huang ... Adriana Ordonez
    Research Article

    Activating transcription factor 6 (ATF6) is one of three endoplasmic reticulum (ER) transmembrane stress sensors that mediate the unfolded protein response (UPR). Despite its crucial role in long-term ER stress adaptation, regulation of ATF6 alpha (α) signalling remains poorly understood, possibly because its activation involves ER-to-Golgi and nuclear trafficking. Here, we generated an ATF6α/Inositol-requiring kinase 1 (IRE1) dual UPR reporter CHO-K1 cell line and performed an unbiased genome-wide CRISPR/Cas9 mutagenesis screen to systematically profile genetic factors that specifically contribute to ATF6α signalling in the presence and absence of ER stress. The screen identified both anticipated and new candidate genes that regulate ATF6α activation. Among these, calreticulin (CRT), a key ER luminal chaperone, selectively repressed ATF6α signalling: Cells lacking CRT constitutively activated a BiP::sfGFP ATF6α-dependent reporter, had higher BiP levels and an increased rate of trafficking and processing of ATF6α. Purified CRT interacted with the luminal domain of ATF6α in vitro and the two proteins co-immunoprecipitated from cell lysates. CRT depletion exposed a negative feedback loop implicating ATF6α in repressing IRE1 activity basally and overexpression of CRT reversed this repression. Our findings indicate that CRT, beyond its known role as a chaperone, also serves as an ER repressor of ATF6α to selectively regulate one arm of the UPR.