Stress-mediated exit to quiescence restricted by increasing persistence in CDK4/6 activation

  1. Hee Won Yang  Is a corresponding author
  2. Steven D Cappell
  3. Ariel Jaimovich
  4. Chad Liu
  5. Mingyu Chung
  6. Leighton H Daigh
  7. Lindsey R Pack
  8. Yilin Fan
  9. Sergi Regot
  10. Markus Covert
  11. Tobias Meyer  Is a corresponding author
  1. Columbia University, United States
  2. NIH, United States
  3. Stanford University, United States
  4. Johns Hopkins University School of Medicine, United States

Abstract

Mammalian cells typically start the cell-cycle entry program by activating cyclin-dependent protein kinase 4/6 (CDK4/6). CDK4/6 activity is clinically relevant as mutations, deletions, and amplifications that increase CDK4/6 activity contribute to the progression of many cancers. However, when CDK4/6 is activated relative to CDK2 remained incompletely understood. Here we developed a reporter system to simultaneously monitor CDK4/6 and CDK2 activities in single cells and found that CDK4/6 activity increases rapidly before CDK2 activity gradually increases, and that CDK4/6 activity can be active after mitosis or inactive for variable time periods. Markedly, stress signals in G1 can rapidly inactivate CDK4/6 to return cells to quiescence but with reduced probability as cells approach S phase. Together, our study reveals a regulation of G1 length by temporary inactivation of CDK4/6 activity after mitosis, and a progressively increasing persistence in CDK4/6 activity that restricts cells from returning to quiescence as cells approach S phase.

Data availability

Source data files have been provided for Figures 1, 2, 3, 4, Figure 1-figure supplement 2 and 4. Source data for Figure 2-figure supplement 2 and Figure 3-figure supplement 1 will be made available online with the final version of record.

Article and author information

Author details

  1. Hee Won Yang

    Department of Pathology and Cell Biology, Columbia University, New York, United States
    For correspondence
    hy2602@cumc.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Steven D Cappell

    NCI, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ariel Jaimovich

    Department of Chemical and Systems Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Chad Liu

    Department of Chemical and Systems Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mingyu Chung

    Chemical and Systems Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Leighton H Daigh

    Department of Chemical and Systems Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Lindsey R Pack

    Department of Chemical and Systems Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yilin Fan

    Department of Chemical and Systems Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sergi Regot

    Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9786-3897
  10. Markus Covert

    Bioengineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5993-8912
  11. Tobias Meyer

    Department of Chemical and Systems Biology, Stanford University, Stanford, United States
    For correspondence
    tobias1@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4339-3804

Funding

National Institute of General Medical Sciences (GM127026)

  • Tobias Meyer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 5,534
    views
  • 805
    downloads
  • 71
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hee Won Yang
  2. Steven D Cappell
  3. Ariel Jaimovich
  4. Chad Liu
  5. Mingyu Chung
  6. Leighton H Daigh
  7. Lindsey R Pack
  8. Yilin Fan
  9. Sergi Regot
  10. Markus Covert
  11. Tobias Meyer
(2020)
Stress-mediated exit to quiescence restricted by increasing persistence in CDK4/6 activation
eLife 9:e44571.
https://doi.org/10.7554/eLife.44571

Share this article

https://doi.org/10.7554/eLife.44571

Further reading

    1. Cell Biology
    Jittoku Ihara, Yibin Huang ... Koichi Yamamoto
    Research Article

    Chronic kidney disease (CKD) and atherosclerotic heart disease, frequently associated with dyslipidemia and hypertension, represent significant health concerns. We investigated the interplay among these conditions, focusing on the role of oxidized low-density lipoprotein (oxLDL) and angiotensin II (Ang II) in renal injury via G protein αq subunit (Gq) signaling. We hypothesized that oxLDL enhances Ang II-induced Gq signaling via the AT1 (Ang II type 1 receptor)-LOX1 (lectin-like oxLDL receptor) complex. Based on CHO and renal cell model experiments, oxLDL alone did not activate Gq signaling. However, when combined with Ang II, it significantly potentiated Gq-mediated inositol phosphate 1 production and calcium influx in cells expressing both LOX-1 and AT1 but not in AT1-expressing cells. This suggests a critical synergistic interaction between oxLDL and Ang II in the AT1-LOX1 complex. Conformational studies using AT1 biosensors have indicated a unique receptor conformational change due to the oxLDL-Ang II combination. In vivo, wild-type mice fed a high-fat diet with Ang II infusion presented exacerbated renal dysfunction, whereas LOX-1 knockout mice did not, underscoring the pathophysiological relevance of the AT1-LOX1 interaction in renal damage. These findings highlight a novel mechanism of renal dysfunction in CKD driven by dyslipidemia and hypertension and suggest the therapeutic potential of AT1-LOX1 receptor complex in patients with these comorbidities.

    1. Cell Biology
    Qi Zeng, Chen Yao ... Shuai Chen
    Research Article

    Mounting evidence has demonstrated the genetic association of ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3) gene polymorphisms with bronchial asthma and a diverse set of inflammatory disorders. However, its role in type I interferon (type I IFN) signaling remains poorly defined. Herein, we report that ORMDL3 is a negative modulator of the type I IFN signaling by interacting with mitochondrial antiviral signaling protein (MAVS) and subsequently promoting the proteasome-mediated degradation of retinoic acid-inducible gene I (RIG-I). Immunoprecipitation coupled with mass spectrometry (IP-MS) assays uncovered that ORMDL3 binds to ubiquitin-specific protease 10 (USP10), which forms a complex with and stabilizes RIG-I through decreasing its K48-linked ubiquitination. ORMDL3 thus disrupts the interaction between USP10 and RIG-I, thereby promoting RIG-I degradation. Additionally, subcutaneous syngeneic tumor models in C57BL/6 mice revealed that inhibition of ORMDL3 enhances anti-tumor efficacy by augmenting the proportion of cytotoxic CD8 positive T cells and IFN production in the tumor microenvironment (TME). Collectively, our findings reveal the pivotal roles of ORMDL3 in maintaining antiviral innate immune responses and anti-tumor immunity.