Arp2/3 complex-driven spatial patterning of the BCR enhances immune synapse formation, BCR signaling and cell activation

Abstract

When B cells encounter antigens on the surface of an antigen-presenting cell (APC), B cell receptors (BCRs) are gathered into microclusters that recruit signaling enzymes. These microclusters then move centripetally and coalesce into the central supramolecular activation cluster of an immune synapse. The mechanisms controlling BCR organization during immune synapse formation, and how this impacts BCR signaling, are not fully understood. We show that this coalescence of BCR microclusters depends on the actin-related protein 2/3 (Arp2/3) complex, which nucleates branched actin networks. Moreover, in murine B cells this dynamic spatial reorganization of BCR microclusters amplifies proximal BCR signaling reactions and enhances the ability of membrane-associated antigens to induce transcriptional responses and proliferation. Our finding that Arp2/3 complex activity is important for B cell responses to spatially-restricted membrane-bound antigens, but not for soluble antigens, highlights a critical role for Arp2/3 complex-dependent actin remodeling in B cell responses to APC-bound antigens.

Data availability

Custom image analysis scripts are available online at https://github.com/madscience12/FIJImacros and https://bitbucket.org/jscurll/bolger-munro_image_analysis_scripts/src/780 32434bd6725397459af901000afddab7bd9b58a2?at=master

The following data sets were generated

Article and author information

Author details

  1. Madison Bolger-Munro

    Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
    For correspondence
    mbolgerm@mail.ubc.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8176-4824
  2. Kate Choi

    Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Joshua M Scurll

    Department of Mathematics, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Libin Abraham

    Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Rhys S Chappell

    Department of Mathematics, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Duke Sheen

    Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. May Dang-Lawson

    Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Xufeng Wu

    Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. John J Priatel

    Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Daniel Coombs

    Department of Mathematics, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8038-6278
  11. John A Hammer

    Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Michael R Gold

    Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
    For correspondence
    mgold@mail.ubc.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1222-3191

Funding

Canadian Institutes of Health Research (MOP-68865)

  • Michael R Gold

Natural Sciences and Engineering Research Council of Canada (RGPIN-2015-04611)

  • Daniel Coombs

Canadian Institutes of Health Research (PJT-152946)

  • Michael R Gold

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All of the animals were handled according to protocols approved by the University of British Columbia Animal Care Committee. Our animal protocols were approved by the University of British Columbia Animal Care Committee (mouse breeding license #A18-0334; animal use license #A15-0162). Mice were euthanized using halothane inhalation, followed by cervical dislocation, as detailed in our approved animal licenses.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 4,432
    views
  • 541
    downloads
  • 54
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Madison Bolger-Munro
  2. Kate Choi
  3. Joshua M Scurll
  4. Libin Abraham
  5. Rhys S Chappell
  6. Duke Sheen
  7. May Dang-Lawson
  8. Xufeng Wu
  9. John J Priatel
  10. Daniel Coombs
  11. John A Hammer
  12. Michael R Gold
(2019)
Arp2/3 complex-driven spatial patterning of the BCR enhances immune synapse formation, BCR signaling and cell activation
eLife 8:e44574.
https://doi.org/10.7554/eLife.44574

Share this article

https://doi.org/10.7554/eLife.44574

Further reading

    1. Cell Biology
    Jingjing Li, Xinyue Wang ... Vincent Archambault
    Research Article

    In animals, mitosis involves the breakdown of the nucleus. The reassembly of a nucleus after mitosis requires the reformation of the nuclear envelope around a single mass of chromosomes. This process requires Ankle2 (also known as LEM4 in humans) which interacts with PP2A and promotes the function of the Barrier-to-Autointegration Factor (BAF). Upon dephosphorylation, BAF dimers cross-bridge chromosomes and bind lamins and transmembrane proteins of the reassembling nuclear envelope. How Ankle2 functions in mitosis is incompletely understood. Using a combination of approaches in Drosophila, along with structural modeling, we provide several lines of evidence that suggest that Ankle2 is a regulatory subunit of PP2A, explaining how it promotes BAF dephosphorylation. In addition, we discovered that Ankle2 interacts with the endoplasmic reticulum protein Vap33, which is required for Ankle2 localization at the reassembling nuclear envelope during telophase. We identified the interaction sites of PP2A and Vap33 on Ankle2. Through genetic rescue experiments, we show that the Ankle2/PP2A interaction is essential for the function of Ankle2 in nuclear reassembly and that the Ankle2/Vap33 interaction also promotes this process. Our study sheds light on the molecular mechanisms of post-mitotic nuclear reassembly and suggests that the endoplasmic reticulum is not merely a source of membranes in the process, but also provides localized enzymatic activity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bhumil Patel, Maryke Grobler ... Needhi Bhalla
    Research Article

    Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2’s conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.