5α-cyprinol sulfate, a bile salt from fish, induces diel vertical migration in Daphnia

  1. Meike Anika Hahn  Is a corresponding author
  2. Christoph Effertz
  3. Laurent Bigler
  4. Eric von Elert
  1. University of Cologne, Germany
  2. University of Zurich, Switzerland

Abstract

Prey are under selection to minimize predation losses. In aquatic environments many prey use chemical cues released by predators, which initiate predator-avoidance. A prominent example of behavioural predator-avoidance constitutes diel vertical migration (DVM) in the freshwater microcrustacean Daphnia spp., which is induced by chemical cues (kairomones) released by planktivorous fish. In a bioassay-guided approach using liquid chromatography and mass spectrometry we isolated the kairomone from fish incubation water and identified it as 5α-cyprinol sulfate inducing DVM in Daphnia at picomolar concentrations. The role of 5α-cyprinol sulfate in lipid digestion in fish explains why from an evolutionary perspective fish has not stopped releasing 5α-cyprinol sulfate despite the disadvantages for the releaser. The identification of the DVM-inducing kairomone enables investigating its spatial and temporal distribution and the underlying molecular mechanism of its perception. Furthermore, it allows to test if fish-mediated inducible defenses in other aquatic invertebrates are triggered by the same compound.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, Figure 1-figure supplement 2, Figure 4, Figure 3-figure supplement 2, and Figure 4-figure supplement 6.

The following data sets were generated

Article and author information

Author details

  1. Meike Anika Hahn

    Department of Biology, University of Cologne, Cologne, Germany
    For correspondence
    meike.hahn@uni-koeln.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5090-0849
  2. Christoph Effertz

    Department of Biology, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Laurent Bigler

    Department of Chemistry, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Eric von Elert

    Department of Biology, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7758-716X

Funding

No external funding was received for this work.

Reviewing Editor

  1. Georg Pohnert, University of Jena, Germany

Publication history

  1. Received: December 29, 2018
  2. Accepted: May 2, 2019
  3. Accepted Manuscript published: May 2, 2019 (version 1)
  4. Version of Record published: June 11, 2019 (version 2)

Copyright

© 2019, Hahn et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,860
    Page views
  • 269
    Downloads
  • 25
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Meike Anika Hahn
  2. Christoph Effertz
  3. Laurent Bigler
  4. Eric von Elert
(2019)
5α-cyprinol sulfate, a bile salt from fish, induces diel vertical migration in Daphnia
eLife 8:e44791.
https://doi.org/10.7554/eLife.44791
  1. Further reading

Further reading

    1. Ecology
    John Jackson et al.
    Research Article

    With the looming threat of abrupt ecological disruption due to a changing climate, predicting which species are most vulnerable to environmental change is critical. The life-history of a species is an evolved response to its environmental context, and therefore a promising candidate for explaining differences in climate-change responses. However, we need broad empirical assessments from across the worlds ecosystems to explore the link between life-history and climate-change responses. Here, we use long-term abundance records from 157 species of terrestrial mammal and a two-step Bayesian meta-regression framework to investigate the link between annual weather anomalies, population growth rates, and species-level life-history. Overall, we found no directional effect of temperature or precipitation anomalies or variance on annual population growth rates. Furthermore, population responses to weather anomalies were not predicted by phylogenetic covariance, and instead there was more variability in weather responses for populations within a species. Crucially, however, long-lived mammals with smaller litter sizes had smaller absolute population responses to weather anomalies compared to their shorter-living counterparts with larger litters. These results highlight the role of species-level life-history in driving responses to the environment.

    1. Ecology
    2. Microbiology and Infectious Disease
    Brian A Dillard et al.
    Short Report Updated

    Urbanization is rapidly altering Earth’s environments, demanding investigation of the impacts on resident wildlife. Here, we show that urban populations of coyotes (Canis latrans), crested anole lizards (Anolis cristatellus), and white-crowned sparrows (Zonotrichia leucophrys) acquire gut microbiota constituents found in humans, including gut bacterial lineages associated with urbanization in humans. Comparisons of urban and rural wildlife and human populations revealed significant convergence of gut microbiota among urban populations relative to rural populations. All bacterial lineages overrepresented in urban wildlife relative to rural wildlife and differentially abundant between urban and rural humans were also overrepresented in urban humans relative to rural humans. Remarkably, the bacterial lineage most overrepresented in urban anoles was a Bacteroides sequence variant that was also the most significantly overrepresented in urban human populations. These results indicate parallel effects of urbanization on human and wildlife gut microbiota and suggest spillover of bacteria from humans into wildlife in cities.