Ion counting demonstrates a high electrostatic field generated by the nucleosome

  1. Magdalena Gebala  Is a corresponding author
  2. Stephanie L Johnson
  3. Geeta J Narlikar
  4. Daniel Herschlag  Is a corresponding author
  1. Stanford University, United States
  2. University of California, San Francisco, United States

Abstract

The first step towards the eukaryotic nuclear DNA compaction process is the formation of a nucleosome, which comprises of the negatively charged DNA wrapped around a positively charged histone protein octamer. Often, it is assumed that the complexation of the DNA into the nucleosome completely attenuates the DNA charge and hence the electrostatic field generated by the molecule. In contrast, theoretical and computational studies suggest that the nucleosome retains a strong, negative electrostatic field. Despite their fundamental implications for chromatin organization and function, these opposing views of nucleosome electrostatics have not been experimentally tested. Herein, we directly measure nucleosome electrostatics and find that while nucleosome formation reduces the complex charge by half, the nucleosome nevertheless maintains a strong negative electrostatic field. Our studies highlight the importance of considering the polyelectrolyte nature of the nucleosome and its impact on processes ranging from factor binding to DNA compaction.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data and source code files have been provided for Figures 3 and 4.

Article and author information

Author details

  1. Magdalena Gebala

    Department of Biochemistry, Stanford University, Stanford, United States
    For correspondence
    mgebala@stanford.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1086-5548
  2. Stephanie L Johnson

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  3. Geeta J Narlikar

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    Geeta J Narlikar, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1920-0147
  4. Daniel Herschlag

    Department of Biochemistry, Stanford University, Stanford, United States
    For correspondence
    herschla@stanford.edu
    Competing interests
    No competing interests declared.

Funding

National Institutes of Health (P01GM066275)

  • Daniel Herschlag

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Gebala et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,648
    views
  • 425
    downloads
  • 49
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Magdalena Gebala
  2. Stephanie L Johnson
  3. Geeta J Narlikar
  4. Daniel Herschlag
(2019)
Ion counting demonstrates a high electrostatic field generated by the nucleosome
eLife 8:e44993.
https://doi.org/10.7554/eLife.44993

Share this article

https://doi.org/10.7554/eLife.44993

Further reading

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Robyn D Moir, Emilio Merheb ... Ian M Willis
    Research Article

    Pathogenic variants in subunits of RNA polymerase (Pol) III cause a spectrum of Polr3-related neurodegenerative diseases including 4H leukodystrophy. Disease onset occurs from infancy to early adulthood and is associated with a variable range and severity of neurological and non-neurological features. The molecular basis of Polr3-related disease pathogenesis is unknown. We developed a postnatal whole-body mouse model expressing pathogenic Polr3a mutations to examine the molecular mechanisms by which reduced Pol III transcription results primarily in central nervous system phenotypes. Polr3a mutant mice exhibit behavioral deficits, cerebral pathology and exocrine pancreatic atrophy. Transcriptome and immunohistochemistry analyses of cerebra during disease progression show a reduction in most Pol III transcripts, induction of innate immune and integrated stress responses and cell-type-specific gene expression changes reflecting neuron and oligodendrocyte loss and microglial activation. Earlier in the disease when integrated stress and innate immune responses are minimally induced, mature tRNA sequencing revealed a global reduction in tRNA levels and an altered tRNA profile but no changes in other Pol III transcripts. Thus, changes in the size and/or composition of the tRNA pool have a causal role in disease initiation. Our findings reveal different tissue- and brain region-specific sensitivities to a defect in Pol III transcription.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ting-Wen Chen, Hsiao-Wei Liao ... Chung-Te Chang
    Research Article

    The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated. Moreover, in humans, the specific biological functions of the two DCP1 paralogs, DCP1a and DCP1b, remain largely unknown. To investigate the role of human DCP1, we generated cell lines that were deficient in DCP1a, DCP1b, or both to evaluate the importance of DCP1 in the decapping machinery. Our results highlight the importance of human DCP1 in decapping process and show that the EVH1 domain of DCP1 enhances the mRNA-binding affinity of DCP2. Transcriptome and metabolome analyses outline the distinct functions of DCP1a and DCP1b in human cells, regulating specific endogenous mRNA targets and biological processes. Overall, our findings provide insights into the molecular mechanism of human DCP1 in mRNA decapping and shed light on the distinct functions of its paralogs.