Self-capping of nucleoprotein filaments protects Newcastle Disease Virus genome

  1. Xiyong Song
  2. Hong Shan
  3. Yanping Zhu
  4. Shunlin Hu
  5. Ling Xue
  6. Yong Chen
  7. Wei Ding
  8. Tongxin Niu
  9. Jian Gu
  10. Songying Ouyang  Is a corresponding author
  11. Qing-Tao Shen  Is a corresponding author
  12. Zhi-Jie Liu  Is a corresponding author
  1. Kunming Medical University, China
  2. ShanghaiTech University, China
  3. Chinese Academy of Sciences, China
  4. Yangzhou University, China
  5. Fujian Normal University, China

Abstract

Non-segmented negative-strand RNA viruses, such as Measles, Ebola and Newcastle disease viruses (NDV), encapsidate viral genomic RNAs into helical nucleocapsids which serve as the template for viral replication and transcription. Here, the clam-shaped nucleocapsid structure, where the NDV viral genome is sequestered, was determined at 4.8 Å resolution by cryo-electron microscopy. The clam-shaped structure is composed of two single-turn spirals packed in a back-to-back mode, and the tightly packed structure functions as a seed for nucleocapsid to assemble from both directions and grows into double-headed filaments with two separate RNA strings inside. Disruption of this structure by mutations on its loop interface yielded a single-headed unfunctional filament.

Data availability

The cryo-EM density map has been deposited in EMDB with the accession number EMD-9793. The atom coordinates of the structure have been deposited in PDB with the PDB ID 6JC3.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Xiyong Song

    Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Hong Shan

    iHuman Institute, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yanping Zhu

    National Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Shunlin Hu

    College of Veterinary Medicine, Yangzhou University, Yangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Ling Xue

    College of Veterinary Medicine, Yangzhou University, Yangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yong Chen

    National Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Wei Ding

    Center for Biological Imaging, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Tongxin Niu

    Center for Biological Imaging, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Jian Gu

    College of Veterinary Medicine, Yangzhou University, Yangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Songying Ouyang

    College of Life Sciences, Fujian Normal University, Fuzhou, China
    For correspondence
    ouyangsy@fjnu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  11. Qing-Tao Shen

    iHuman Institute, ShanghaiTech University, Shanghai, China
    For correspondence
    shenqt@shanghaitech.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  12. Zhi-Jie Liu

    Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
    For correspondence
    liuzhj@shanghaiTech.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7279-2893

Funding

National Nature Science Foundation of China grant (31330019)

  • Zhi-Jie Liu

National Nature Science Foundation of China grant (31770948)

  • Songying Ouyang

National Nature Science Foundation of China grant (31570875)

  • Songying Ouyang

National Natural Science Foundation of China grant (81590761)

  • Songying Ouyang

the National Key R&D program of China (2017YFA0504800)

  • Qing-Tao Shen

Yunnan Provincial Science and Technology Department Project (2016FC007)

  • Zhi-Jie Liu

The Pujiang Talent program (17PJ1406700)

  • Qing-Tao Shen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Song et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,042
    views
  • 310
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiyong Song
  2. Hong Shan
  3. Yanping Zhu
  4. Shunlin Hu
  5. Ling Xue
  6. Yong Chen
  7. Wei Ding
  8. Tongxin Niu
  9. Jian Gu
  10. Songying Ouyang
  11. Qing-Tao Shen
  12. Zhi-Jie Liu
(2019)
Self-capping of nucleoprotein filaments protects Newcastle Disease Virus genome
eLife 8:e45057.
https://doi.org/10.7554/eLife.45057

Share this article

https://doi.org/10.7554/eLife.45057

Further reading

    1. Microbiology and Infectious Disease
    Dawid S Zyla
    Insight

    A combination of imaging techniques reveals how herpes simplex virus type 1 assembles within infected cells, highlighting the roles of essential viral proteins in viral assembly and exit.

    1. Microbiology and Infectious Disease
    Dhaval Ghone, Edward L Evans ... Aussie Suzuki
    Research Article

    Virion Infectivity Factor (Vif) of the Human Immunodeficiency Virus type 1 (HIV-1) targets and degrades cellular APOBEC3 proteins, key regulators of intrinsic and innate antiretroviral immune responses, thereby facilitating HIV-1 infection. While Vif’s role in degrading APOBEC3G is well-studied, Vif is also known to cause cell cycle arrest, but the detailed nature of Vif’s effects on the cell cycle has yet to be delineated. In this study, we employed high-temporal resolution single-cell live imaging and super-resolution microscopy to monitor individual cells during Vif-induced cell cycle arrest. Our findings reveal that Vif does not affect the G2/M boundary as previously thought. Instead, Vif triggers a unique and robust pseudo-metaphase arrest, distinct from the mild prometaphase arrest induced by Vpr. During this arrest, chromosomes align properly and form the metaphase plate, but later lose alignment, resulting in polar chromosomes. Notably, Vif, unlike Vpr, significantly reduces the levels of both Protein Phosphatase 1 (PP1) and 2 A (PP2A) at kinetochores, which regulate chromosome-microtubule interactions. These results unveil a novel role for Vif in kinetochore regulation that governs the spatial organization of chromosomes during mitosis.