Self-capping of nucleoprotein filaments protects Newcastle Disease Virus genome

  1. Xiyong Song
  2. Hong Shan
  3. Yanping Zhu
  4. Shunlin Hu
  5. Ling Xue
  6. Yong Chen
  7. Wei Ding
  8. Tongxin Niu
  9. Jian Gu
  10. Songying Ouyang  Is a corresponding author
  11. Qing-Tao Shen  Is a corresponding author
  12. Zhi-Jie Liu  Is a corresponding author
  1. Kunming Medical University, China
  2. ShanghaiTech University, China
  3. Chinese Academy of Sciences, China
  4. Yangzhou University, China
  5. Fujian Normal University, China

Abstract

Non-segmented negative-strand RNA viruses, such as Measles, Ebola and Newcastle disease viruses (NDV), encapsidate viral genomic RNAs into helical nucleocapsids which serve as the template for viral replication and transcription. Here, the clam-shaped nucleocapsid structure, where the NDV viral genome is sequestered, was determined at 4.8 Å resolution by cryo-electron microscopy. The clam-shaped structure is composed of two single-turn spirals packed in a back-to-back mode, and the tightly packed structure functions as a seed for nucleocapsid to assemble from both directions and grows into double-headed filaments with two separate RNA strings inside. Disruption of this structure by mutations on its loop interface yielded a single-headed unfunctional filament.

Data availability

The cryo-EM density map has been deposited in EMDB with the accession number EMD-9793. The atom coordinates of the structure have been deposited in PDB with the PDB ID 6JC3.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Xiyong Song

    Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Hong Shan

    iHuman Institute, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yanping Zhu

    National Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Shunlin Hu

    College of Veterinary Medicine, Yangzhou University, Yangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Ling Xue

    College of Veterinary Medicine, Yangzhou University, Yangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yong Chen

    National Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Wei Ding

    Center for Biological Imaging, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Tongxin Niu

    Center for Biological Imaging, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Jian Gu

    College of Veterinary Medicine, Yangzhou University, Yangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Songying Ouyang

    College of Life Sciences, Fujian Normal University, Fuzhou, China
    For correspondence
    ouyangsy@fjnu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  11. Qing-Tao Shen

    iHuman Institute, ShanghaiTech University, Shanghai, China
    For correspondence
    shenqt@shanghaitech.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  12. Zhi-Jie Liu

    Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
    For correspondence
    liuzhj@shanghaiTech.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7279-2893

Funding

National Nature Science Foundation of China grant (31330019)

  • Zhi-Jie Liu

National Nature Science Foundation of China grant (31770948)

  • Songying Ouyang

National Nature Science Foundation of China grant (31570875)

  • Songying Ouyang

National Natural Science Foundation of China grant (81590761)

  • Songying Ouyang

the National Key R&D program of China (2017YFA0504800)

  • Qing-Tao Shen

Yunnan Provincial Science and Technology Department Project (2016FC007)

  • Zhi-Jie Liu

The Pujiang Talent program (17PJ1406700)

  • Qing-Tao Shen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Song et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,022
    views
  • 309
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiyong Song
  2. Hong Shan
  3. Yanping Zhu
  4. Shunlin Hu
  5. Ling Xue
  6. Yong Chen
  7. Wei Ding
  8. Tongxin Niu
  9. Jian Gu
  10. Songying Ouyang
  11. Qing-Tao Shen
  12. Zhi-Jie Liu
(2019)
Self-capping of nucleoprotein filaments protects Newcastle Disease Virus genome
eLife 8:e45057.
https://doi.org/10.7554/eLife.45057

Share this article

https://doi.org/10.7554/eLife.45057

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Axelle Amen, Randy Yoo ... Matthijs M Jore
    Research Article

    Circulating sexual stages of Plasmodium falciparum (Pf) can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies can efficiently block parasite transmission. In search for naturally acquired antibodies targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of Pf in the form of gametes and gametocyte extracts. We isolated mAbs reactive against a range of Pf proteins including well-established targets Pfs48/45 and Pfs230. One mAb, B1E11K, was cross-reactive to various proteins containing glutamate-rich repetitive elements expressed at different stages of the parasite life cycle. A crystal structure of two B1E11K Fab domains in complex with its main antigen, RESA, expressed on asexual blood stages, showed binding of B1E11K to a repeating epitope motif in a head-to-head conformation engaging in affinity-matured homotypic interactions. Thus, this mode of recognition of Pf proteins, previously described only for Pf circumsporozoite protein (PfCSP), extends to other repeats expressed across various stages. The findings augment our understanding of immune-pathogen interactions to repeating elements of the Plasmodium parasite proteome and underscore the potential of the novel mAb identification method used to provide new insights into the natural humoral immune response against Pf.

    1. Microbiology and Infectious Disease
    Nicolas Flaugnatti, Loriane Bader ... Melanie Blokesch
    Research Article Updated

    The type VI secretion system (T6SS) is a sophisticated, contact-dependent nanomachine involved in interbacterial competition. To function effectively, the T6SS must penetrate the membranes of both attacker and target bacteria. Structures associated with the cell envelope, like polysaccharides chains, can therefore introduce spatial separation and steric hindrance, potentially affecting the efficacy of the T6SS. In this study, we examined how the capsular polysaccharide (CPS) of Acinetobacter baumannii affects T6SS’s antibacterial function. Our findings show that the CPS confers resistance against T6SS-mediated assaults from rival bacteria. Notably, under typical growth conditions, the presence of the surface-bound capsule also reduces the efficacy of the bacterium’s own T6SS. This T6SS impairment is further enhanced when CPS is overproduced due to genetic modifications or antibiotic treatment. Furthermore, we demonstrate that the bacterium adjusts the level of the T6SS inner tube protein Hcp according to its secretion capacity, by initiating a degradation process involving the ClpXP protease. Collectively, our findings contribute to a better understanding of the dynamic relationship between T6SS and CPS and how they respond swiftly to environmental challenges.