Self-capping of nucleoprotein filaments protects Newcastle Disease Virus genome
Abstract
Non-segmented negative-strand RNA viruses, such as Measles, Ebola and Newcastle disease viruses (NDV), encapsidate viral genomic RNAs into helical nucleocapsids which serve as the template for viral replication and transcription. Here, the clam-shaped nucleocapsid structure, where the NDV viral genome is sequestered, was determined at 4.8 Å resolution by cryo-electron microscopy. The clam-shaped structure is composed of two single-turn spirals packed in a back-to-back mode, and the tightly packed structure functions as a seed for nucleocapsid to assemble from both directions and grows into double-headed filaments with two separate RNA strings inside. Disruption of this structure by mutations on its loop interface yielded a single-headed unfunctional filament.
Data availability
The cryo-EM density map has been deposited in EMDB with the accession number EMD-9793. The atom coordinates of the structure have been deposited in PDB with the PDB ID 6JC3.
-
The Cryo-EM structure of nucleoprotein-RNA complex of Newcastle disease virusRCSB Protein Data Bank, 6JC3.
-
The Cryo-EM structure of nucleoprotein-RNA complex of Newcastle disease virusElectron Microscopy Data Bank, EMD-9793.
Article and author information
Author details
Funding
National Nature Science Foundation of China grant (31330019)
- Zhi-Jie Liu
National Nature Science Foundation of China grant (31770948)
- Songying Ouyang
National Nature Science Foundation of China grant (31570875)
- Songying Ouyang
National Natural Science Foundation of China grant (81590761)
- Songying Ouyang
the National Key R&D program of China (2017YFA0504800)
- Qing-Tao Shen
Yunnan Provincial Science and Technology Department Project (2016FC007)
- Zhi-Jie Liu
The Pujiang Talent program (17PJ1406700)
- Qing-Tao Shen
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2019, Song et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,042
- views
-
- 310
- downloads
-
- 22
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Microbiology and Infectious Disease
A combination of imaging techniques reveals how herpes simplex virus type 1 assembles within infected cells, highlighting the roles of essential viral proteins in viral assembly and exit.
-
- Microbiology and Infectious Disease
Virion Infectivity Factor (Vif) of the Human Immunodeficiency Virus type 1 (HIV-1) targets and degrades cellular APOBEC3 proteins, key regulators of intrinsic and innate antiretroviral immune responses, thereby facilitating HIV-1 infection. While Vif’s role in degrading APOBEC3G is well-studied, Vif is also known to cause cell cycle arrest, but the detailed nature of Vif’s effects on the cell cycle has yet to be delineated. In this study, we employed high-temporal resolution single-cell live imaging and super-resolution microscopy to monitor individual cells during Vif-induced cell cycle arrest. Our findings reveal that Vif does not affect the G2/M boundary as previously thought. Instead, Vif triggers a unique and robust pseudo-metaphase arrest, distinct from the mild prometaphase arrest induced by Vpr. During this arrest, chromosomes align properly and form the metaphase plate, but later lose alignment, resulting in polar chromosomes. Notably, Vif, unlike Vpr, significantly reduces the levels of both Protein Phosphatase 1 (PP1) and 2 A (PP2A) at kinetochores, which regulate chromosome-microtubule interactions. These results unveil a novel role for Vif in kinetochore regulation that governs the spatial organization of chromosomes during mitosis.