Self-capping of nucleoprotein filaments protects Newcastle Disease Virus genome

  1. Xiyong Song
  2. Hong Shan
  3. Yanping Zhu
  4. Shunlin Hu
  5. Ling Xue
  6. Yong Chen
  7. Wei Ding
  8. Tongxin Niu
  9. Jian Gu
  10. Songying Ouyang  Is a corresponding author
  11. Qing-Tao Shen  Is a corresponding author
  12. Zhi-Jie Liu  Is a corresponding author
  1. Kunming Medical University, China
  2. ShanghaiTech University, China
  3. Chinese Academy of Sciences, China
  4. Yangzhou University, China
  5. Fujian Normal University, China

Abstract

Non-segmented negative-strand RNA viruses, such as Measles, Ebola and Newcastle disease viruses (NDV), encapsidate viral genomic RNAs into helical nucleocapsids which serve as the template for viral replication and transcription. Here, the clam-shaped nucleocapsid structure, where the NDV viral genome is sequestered, was determined at 4.8 Å resolution by cryo-electron microscopy. The clam-shaped structure is composed of two single-turn spirals packed in a back-to-back mode, and the tightly packed structure functions as a seed for nucleocapsid to assemble from both directions and grows into double-headed filaments with two separate RNA strings inside. Disruption of this structure by mutations on its loop interface yielded a single-headed unfunctional filament.

Data availability

The cryo-EM density map has been deposited in EMDB with the accession number EMD-9793. The atom coordinates of the structure have been deposited in PDB with the PDB ID 6JC3.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Xiyong Song

    Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Hong Shan

    iHuman Institute, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yanping Zhu

    National Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Shunlin Hu

    College of Veterinary Medicine, Yangzhou University, Yangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Ling Xue

    College of Veterinary Medicine, Yangzhou University, Yangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yong Chen

    National Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Wei Ding

    Center for Biological Imaging, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Tongxin Niu

    Center for Biological Imaging, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Jian Gu

    College of Veterinary Medicine, Yangzhou University, Yangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Songying Ouyang

    College of Life Sciences, Fujian Normal University, Fuzhou, China
    For correspondence
    ouyangsy@fjnu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  11. Qing-Tao Shen

    iHuman Institute, ShanghaiTech University, Shanghai, China
    For correspondence
    shenqt@shanghaitech.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  12. Zhi-Jie Liu

    Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
    For correspondence
    liuzhj@shanghaiTech.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7279-2893

Funding

National Nature Science Foundation of China grant (31330019)

  • Zhi-Jie Liu

National Nature Science Foundation of China grant (31770948)

  • Songying Ouyang

National Nature Science Foundation of China grant (31570875)

  • Songying Ouyang

National Natural Science Foundation of China grant (81590761)

  • Songying Ouyang

the National Key R&D program of China (2017YFA0504800)

  • Qing-Tao Shen

Yunnan Provincial Science and Technology Department Project (2016FC007)

  • Zhi-Jie Liu

The Pujiang Talent program (17PJ1406700)

  • Qing-Tao Shen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David M Knipe, Harvard Medical School, United States

Version history

  1. Received: January 10, 2019
  2. Accepted: July 9, 2019
  3. Accepted Manuscript published: July 10, 2019 (version 1)
  4. Version of Record published: August 1, 2019 (version 2)

Copyright

© 2019, Song et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,895
    views
  • 299
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiyong Song
  2. Hong Shan
  3. Yanping Zhu
  4. Shunlin Hu
  5. Ling Xue
  6. Yong Chen
  7. Wei Ding
  8. Tongxin Niu
  9. Jian Gu
  10. Songying Ouyang
  11. Qing-Tao Shen
  12. Zhi-Jie Liu
(2019)
Self-capping of nucleoprotein filaments protects Newcastle Disease Virus genome
eLife 8:e45057.
https://doi.org/10.7554/eLife.45057

Share this article

https://doi.org/10.7554/eLife.45057

Further reading

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Alexander D Cook, Mark Carrington, Matthew K Higgins
    Research Article

    African trypanosomes replicate within infected mammals where they are exposed to the complement system. This system centres around complement C3, which is present in a soluble form in serum but becomes covalently deposited onto the surfaces of pathogens after proteolytic cleavage to C3b. Membrane-associated C3b triggers different complement-mediated effectors which promote pathogen clearance. To counter complement-mediated clearance, African trypanosomes have a cell surface receptor, ISG65, which binds to C3b and which decreases the rate of trypanosome clearance in an infection model. However, the mechanism by which ISG65 reduces C3b function has not been determined. We reveal through cryogenic electron microscopy that ISG65 has two distinct binding sites for C3b, only one of which is available in C3 and C3d. We show that ISG65 does not block the formation of C3b or the function of the C3 convertase which catalyses the surface deposition of C3b. However, we show that ISG65 forms a specific conjugate with C3b, perhaps acting as a decoy. ISG65 also occludes the binding sites for complement receptors 2 and 3, which may disrupt recruitment of immune cells, including B cells, phagocytes, and granulocytes. This suggests that ISG65 protects trypanosomes by combining multiple approaches to dampen the complement cascade.

    1. Microbiology and Infectious Disease
    Michael D Sacco, Lauren R Hammond ... Yu Chen
    Research Article

    In the Firmicutes phylum, GpsB is a membrane associated protein that coordinates peptidoglycan synthesis with cell growth and division. Although GpsB has been studied in several bacteria, the structure, function, and interactome of Staphylococcus aureus GpsB is largely uncharacterized. To address this knowledge gap, we solved the crystal structure of the N-terminal domain of S. aureus GpsB, which adopts an atypical, asymmetric dimer, and demonstrates major conformational flexibility that can be mapped to a hinge region formed by a three-residue insertion exclusive to Staphylococci. When this three-residue insertion is excised, its thermal stability increases, and the mutant no longer produces a previously reported lethal phenotype when overexpressed in Bacillus subtilis. In S. aureus, we show that these hinge mutants are less functional and speculate that the conformational flexibility imparted by the hinge region may serve as a dynamic switch to finetune the function of the GpsB complex and/or to promote interaction with its various partners. Furthermore, we provide the first biochemical, biophysical, and crystallographic evidence that the N-terminal domain of GpsB binds not only PBP4, but also FtsZ, through a conserved recognition motif located on their C-termini, thus coupling peptidoglycan synthesis to cell division. Taken together, the unique structure of S. aureus GpsB and its direct interaction with FtsZ/PBP4 provide deeper insight into the central role of GpsB in S. aureus cell division.