Functional cross-talk between allosteric effects of activating and inhibiting ligands underlies PKM2 regulation

  1. Jamie A Macpherson
  2. Alina Theisen
  3. Laura Masino
  4. Louise Fets
  5. Paul C Driscoll
  6. Vesela Encheva
  7. Ambrosius P Snijders
  8. Stephen R. Martin
  9. Jens Kleinjung
  10. Perdita E Barran
  11. Franca Fraternali  Is a corresponding author
  12. Dimitrios Anastasiou  Is a corresponding author
  1. The Francis Crick Institute, United Kingdom
  2. University of Manchester, United Kingdom
  3. King's College London, United Kingdom

Abstract

Several enzymes can simultaneously interact with multiple intracellular metabolites, however, how the allosteric effects of distinct ligands are integrated to coordinately control enzymatic activity remains poorly understood. We addressed this question using, as a model system, the glycolytic enzyme pyruvate kinase M2 (PKM2). We show that the PKM2 activator fructose 1,6-bisphosphate (FBP) alone promotes tetramerisation and increases PKM2 activity, but addition of the inhibitor L-phenylalanine (Phe) prevents maximal activation of FBP-bound PKM2 tetramers. We developed a method, AlloHubMat, that uses eigenvalue decomposition of mutual information derived from molecular dynamics trajectories to identify residues that mediate FBP-induced allostery. Experimental mutagenesis of these residues identified PKM2 variants in which activation by FBP remains intact but cannot be attenuated by Phe. Our findings reveal residues involved in FBP-induced allostery that enable the integration of allosteric input from Phe and provide a paradigm for the coordinate regulation of enzymatic activity by simultaneous allosteric inputs.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Jamie A Macpherson

    Cancer Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Alina Theisen

    Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0216-8582
  3. Laura Masino

    Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Louise Fets

    Cancer Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Paul C Driscoll

    Metabolomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Vesela Encheva

    Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Ambrosius P Snijders

    Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Stephen R. Martin

    Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Jens Kleinjung

    Computational Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Perdita E Barran

    Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Franca Fraternali

    Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
    For correspondence
    franca.fraternali@kcl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3143-6574
  12. Dimitrios Anastasiou

    Cancer Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
    For correspondence
    dimitrios.anastasiou@crick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1269-843X

Funding

Cancer Research UK (FC001033)

  • Dimitrios Anastasiou

Wellcome (FC001033)

  • Dimitrios Anastasiou

Medical Research Council (FC001033)

  • Dimitrios Anastasiou

Francis Crick Institute (FC001033)

  • Dimitrios Anastasiou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nir Ben-Tal, Tel Aviv University, Israel

Version history

  1. Received: January 20, 2019
  2. Accepted: July 1, 2019
  3. Accepted Manuscript published: July 2, 2019 (version 1)
  4. Version of Record published: July 17, 2019 (version 2)

Copyright

© 2019, Macpherson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,759
    Page views
  • 549
    Downloads
  • 26
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jamie A Macpherson
  2. Alina Theisen
  3. Laura Masino
  4. Louise Fets
  5. Paul C Driscoll
  6. Vesela Encheva
  7. Ambrosius P Snijders
  8. Stephen R. Martin
  9. Jens Kleinjung
  10. Perdita E Barran
  11. Franca Fraternali
  12. Dimitrios Anastasiou
(2019)
Functional cross-talk between allosteric effects of activating and inhibiting ligands underlies PKM2 regulation
eLife 8:e45068.
https://doi.org/10.7554/eLife.45068

Share this article

https://doi.org/10.7554/eLife.45068

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    David O'Reilly, Ioannis Delis
    Tools and Resources

    The muscle synergy is a guiding concept in motor control research that relies on the general notion of muscles ‘working together’ towards task performance. However, although the synergy concept has provided valuable insights into motor coordination, muscle interactions have not been fully characterised with respect to task performance. Here, we address this research gap by proposing a novel perspective to the muscle synergy that assigns specific functional roles to muscle couplings by characterising their task-relevance. Our novel perspective provides nuance to the muscle synergy concept, demonstrating how muscular interactions can ‘work together’ in different ways: (1) irrespective of the task at hand but also (2) redundantly or (3) complementarily towards common task-goals. To establish this perspective, we leverage information- and network-theory and dimensionality reduction methods to include discrete and continuous task parameters directly during muscle synergy extraction. Specifically, we introduce co-information as a measure of the task-relevance of muscle interactions and use it to categorise such interactions as task-irrelevant (present across tasks), redundant (shared task information), or synergistic (different task information). To demonstrate these types of interactions in real data, we firstly apply the framework in a simple way, revealing its added functional and physiological relevance with respect to current approaches. We then apply the framework to large-scale datasets and extract generalizable and scale-invariant representations consisting of subnetworks of synchronised muscle couplings and distinct temporal patterns. The representations effectively capture the functional interplay between task end-goals and biomechanical affordances and the concurrent processing of functionally similar and complementary task information. The proposed framework unifies the capabilities of current approaches in capturing distinct motor features while providing novel insights and research opportunities through a nuanced perspective to the muscle synergy.

    1. Computational and Systems Biology
    Ron Sender, Elad Noor ... Yuval Dor
    Research Article

    Cell-free DNA (cfDNA) tests use small amounts of DNA in the bloodstream as biomarkers. While it is thought that cfDNA is largely released by dying cells, the proportion of dying cells' DNA that reaches the bloodstream is unknown. Here, we integrate estimates of cellular turnover rates to calculate the expected amount of cfDNA. By comparing this to the actual amount of cell type-specific cfDNA, we estimate the proportion of DNA reaching plasma as cfDNA. We demonstrate that <10% of the DNA from dying cells is detectable in plasma, and the ratios of measured to expected cfDNA levels vary a thousand-fold among cell types, often reaching well below 0.1%. The analysis suggests that local clearance, presumably via phagocytosis, takes up most of the dying cells' DNA. Insights into the underlying mechanism may help to understand the physiological significance of cfDNA and improve the sensitivity of liquid biopsies.