Functional cross-talk between allosteric effects of activating and inhibiting ligands underlies PKM2 regulation

  1. Jamie A Macpherson
  2. Alina Theisen
  3. Laura Masino
  4. Louise Fets
  5. Paul C Driscoll
  6. Vesela Encheva
  7. Ambrosius P Snijders
  8. Stephen R. Martin
  9. Jens Kleinjung
  10. Perdita E Barran
  11. Franca Fraternali  Is a corresponding author
  12. Dimitrios Anastasiou  Is a corresponding author
  1. The Francis Crick Institute, United Kingdom
  2. University of Manchester, United Kingdom
  3. King's College London, United Kingdom

Abstract

Several enzymes can simultaneously interact with multiple intracellular metabolites, however, how the allosteric effects of distinct ligands are integrated to coordinately control enzymatic activity remains poorly understood. We addressed this question using, as a model system, the glycolytic enzyme pyruvate kinase M2 (PKM2). We show that the PKM2 activator fructose 1,6-bisphosphate (FBP) alone promotes tetramerisation and increases PKM2 activity, but addition of the inhibitor L-phenylalanine (Phe) prevents maximal activation of FBP-bound PKM2 tetramers. We developed a method, AlloHubMat, that uses eigenvalue decomposition of mutual information derived from molecular dynamics trajectories to identify residues that mediate FBP-induced allostery. Experimental mutagenesis of these residues identified PKM2 variants in which activation by FBP remains intact but cannot be attenuated by Phe. Our findings reveal residues involved in FBP-induced allostery that enable the integration of allosteric input from Phe and provide a paradigm for the coordinate regulation of enzymatic activity by simultaneous allosteric inputs.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Jamie A Macpherson

    Cancer Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Alina Theisen

    Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0216-8582
  3. Laura Masino

    Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Louise Fets

    Cancer Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Paul C Driscoll

    Metabolomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Vesela Encheva

    Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Ambrosius P Snijders

    Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Stephen R. Martin

    Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Jens Kleinjung

    Computational Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Perdita E Barran

    Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Franca Fraternali

    Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
    For correspondence
    franca.fraternali@kcl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3143-6574
  12. Dimitrios Anastasiou

    Cancer Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
    For correspondence
    dimitrios.anastasiou@crick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1269-843X

Funding

Cancer Research UK (FC001033)

  • Dimitrios Anastasiou

Wellcome (FC001033)

  • Dimitrios Anastasiou

Medical Research Council (FC001033)

  • Dimitrios Anastasiou

Francis Crick Institute (FC001033)

  • Dimitrios Anastasiou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Macpherson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,995
    views
  • 586
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jamie A Macpherson
  2. Alina Theisen
  3. Laura Masino
  4. Louise Fets
  5. Paul C Driscoll
  6. Vesela Encheva
  7. Ambrosius P Snijders
  8. Stephen R. Martin
  9. Jens Kleinjung
  10. Perdita E Barran
  11. Franca Fraternali
  12. Dimitrios Anastasiou
(2019)
Functional cross-talk between allosteric effects of activating and inhibiting ligands underlies PKM2 regulation
eLife 8:e45068.
https://doi.org/10.7554/eLife.45068

Share this article

https://doi.org/10.7554/eLife.45068

Further reading

    1. Computational and Systems Biology
    Franck Simon, Maria Colomba Comes ... Herve Isambert
    Tools and Resources

    Live-cell microscopy routinely provides massive amounts of time-lapse images of complex cellular systems under various physiological or therapeutic conditions. However, this wealth of data remains difficult to interpret in terms of causal effects. Here, we describe CausalXtract, a flexible computational pipeline that discovers causal and possibly time-lagged effects from morphodynamic features and cell–cell interactions in live-cell imaging data. CausalXtract methodology combines network-based and information-based frameworks, which is shown to discover causal effects overlooked by classical Granger and Schreiber causality approaches. We showcase the use of CausalXtract to uncover novel causal effects in a tumor-on-chip cellular ecosystem under therapeutically relevant conditions. In particular, we find that cancer-associated fibroblasts directly inhibit cancer cell apoptosis, independently from anticancer treatment. CausalXtract uncovers also multiple antagonistic effects at different time delays. Hence, CausalXtract provides a unique computational tool to interpret live-cell imaging data for a range of fundamental and translational research applications.

    1. Computational and Systems Biology
    2. Structural Biology and Molecular Biophysics
    Bin Zheng, Meimei Duan ... Peng Zheng
    Research Article

    Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding. This conserved domain, found across orthopoxviruses, was experimentally validated and shown to be critical for viral adhesion, making it an ideal target for antiviral drug development. Targeting this domain, we designed a protein inhibitor, which disrupted the H3-HS interaction, inhibited viral infection in vitro and viral replication in vivo, offering a promising antiviral candidate. Our findings reveal a novel therapeutic target of MPXV, demonstrating the potential of combination of AI-driven methods and MD simulations to accelerate antiviral drug discovery.