Conformational dynamics between transmembrane domains and allosteric modulation of a metabotropic glutamate receptor

  1. Vanessa A Gutzeit
  2. Jordana Thibado
  3. Daniel Starer Stor
  4. Zhou Zhou
  5. Scott C Blanchard
  6. Olaf S Andersen
  7. Joshua Levitz  Is a corresponding author
  1. Weill Cornell Graduate School of Medical Sciences, United States
  2. Weill Cornell Medicine, United States

Abstract

Metabotropic glutamate receptors (mGluRs) are class C, synaptic G protein-coupled receptors (GPCRs) that contain large extracellular ligand binding domains (LBDs) and form constitutive dimers. Despite the existence of a detailed picture of inter-LBD conformational dynamics and structural snapshots of both isolated domains and full-length receptors, it remains unclear how mGluR activation proceeds at the level of the transmembrane domains (TMDs) and how TMD-targeting allosteric drugs exert their effects. Here we use time-resolved functional and conformational assays to dissect the mechanisms by which allosteric drugs activate and modulate mGluR2. Single-molecule subunit counting and inter-TMD fluorescence resonance energy transfer measurements in living cells reveal LBD-independent conformational rearrangements between TMD dimers during receptor modulation. Using these assays along with functional readouts, we uncover heterogeneity in the magnitude, direction, and the timing of the action of both positive and negative allosteric drugs. Together our experiments lead to a 3-state model of TMD activation, which provides a framework for understanding how inter-subunit rearrangements drive class C GPCR activation.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Vanessa A Gutzeit

    Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, United States
    Competing interests
    No competing interests declared.
  2. Jordana Thibado

    Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, United States
    Competing interests
    No competing interests declared.
  3. Daniel Starer Stor

    Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, United States
    Competing interests
    No competing interests declared.
  4. Zhou Zhou

    Department of Physiology and Biophysics, Weill Cornell Medicine, New York, United States
    Competing interests
    No competing interests declared.
  5. Scott C Blanchard

    Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, United States
    Competing interests
    Scott C Blanchard, SCB holds equity interest in Lumidyne Technologies.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2717-9365
  6. Olaf S Andersen

    Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, United States
    Competing interests
    No competing interests declared.
  7. Joshua Levitz

    Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, United States
    For correspondence
    jtl2003@med.cornell.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8169-6323

Funding

National Institute of General Medical Sciences (1R35GM124731)

  • Joshua Levitz

National Institute of General Medical Sciences (1R01GM021342)

  • Olaf S Andersen

National Institute of General Medical Sciences (R01GM098858-07)

  • Scott C Blanchard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Gutzeit et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,218
    views
  • 657
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vanessa A Gutzeit
  2. Jordana Thibado
  3. Daniel Starer Stor
  4. Zhou Zhou
  5. Scott C Blanchard
  6. Olaf S Andersen
  7. Joshua Levitz
(2019)
Conformational dynamics between transmembrane domains and allosteric modulation of a metabotropic glutamate receptor
eLife 8:e45116.
https://doi.org/10.7554/eLife.45116

Share this article

https://doi.org/10.7554/eLife.45116

Further reading

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.