Attentional amplification of neural codes for number independent of other quantities along the dorsal visual stream

  1. Elisa Castaldi  Is a corresponding author
  2. Manuela Piazza
  3. Stanislas Dehaene
  4. Alexandre Vignaud
  5. Evelyn Eger
  1. INSERM, France
  2. University of Trento, Italy
  3. INSERM-CEA, France

Abstract

Humans and other animals base important decisions on estimates of number, and intraparietal cortex is thought to provide a crucial substrate of this ability. However, it remains debated whether an independent neuronal processing mechanism underlies this 'number sense' or whether number is instead judged indirectly on the basis of other quantitative features. We performed high-resolution 7 Tesla fMRI while adult human volunteers attended either to the numerosity or an orthogonal dimension (average item size) of visual dot arrays. Along the dorsal visual stream, numerosity explained a significant amount of variance in activation patterns, above and beyond non-numerical dimensions. Its representation was selectively amplified and progressively enhanced across the hierarchy when task relevant. Our results reveal a sensory extraction mechanism yielding information on numerosity separable from other dimensions already at early visual stages and suggest that later regions along the dorsal stream are most important for explicit manipulation of numerical quantity.

Data availability

Individual subjects' data points for behavioural and fMRI results for all regions of interest, corresponding to figure 2A, 3C, 5, 3-supplementary 1 and 2, 5-supplementary 1-2 are provided as .csv files. The maps displayed in figure 2B-D and 3B are provided in a format readable with Freesurfer/Freeview, one of the most widely used free neuroimaging softwares. The functional imaging dataset is available via the Open Science Framework (osf.io/6zch2).

The following data sets were generated

Article and author information

Author details

  1. Elisa Castaldi

    Cognitive Neuroimaging Unit, CEA DRF/JOLIOT, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, INSERM, Gif/Yvette, France
    For correspondence
    elisa.castaldi@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0327-6697
  2. Manuela Piazza

    Center for Mind/Brain Sciences, University of Trento, Trento, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Stanislas Dehaene

    Cognitive Neuroimaging Unit, CEA DRF/JOLIOT, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, INSERM, Gif/Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexandre Vignaud

    UNIRS, CEA DRF/JOLIOT, Université Paris-Saclay, NeuroSpin center, France, INSERM-CEA, Gif/Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Evelyn Eger

    Cognitive Neuroimaging Unit, CEA DRF/JOLIOT, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, INSERM, Gif/Yvette, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

Agence Nationale de la Recherche (ANR-14-CE13-0020-01)

  • Evelyn Eger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by the regional ethics committee (CPP Ile de France VII, Hôpital de Bicêtre, No. 15-007) and all participants gave written informed consent.

Copyright

© 2019, Castaldi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,800
    views
  • 353
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elisa Castaldi
  2. Manuela Piazza
  3. Stanislas Dehaene
  4. Alexandre Vignaud
  5. Evelyn Eger
(2019)
Attentional amplification of neural codes for number independent of other quantities along the dorsal visual stream
eLife 8:e45160.
https://doi.org/10.7554/eLife.45160

Share this article

https://doi.org/10.7554/eLife.45160

Further reading

    1. Neuroscience
    Andrea Sattin, Chiara Nardin ... Tommaso Fellin
    Research Advance

    Two-photon (2P) fluorescence imaging through gradient index (GRIN) lens-based endoscopes is fundamental to investigate the functional properties of neural populations in deep brain circuits. However, GRIN lenses have intrinsic optical aberrations, which severely degrade their imaging performance. GRIN aberrations decrease the signal-to-noise ratio (SNR) and spatial resolution of fluorescence signals, especially in lateral portions of the field-of-view (FOV), leading to restricted FOV and smaller number of recorded neurons. This is especially relevant for GRIN lenses of several millimeters in length, which are needed to reach the deeper regions of the rodent brain. We have previously demonstrated a novel method to enlarge the FOV and improve the spatial resolution of 2P microendoscopes based on GRIN lenses of length <4.1 mm (Antonini et al., 2020). However, previously developed microendoscopes were too short to reach the most ventral regions of the mouse brain. In this study, we combined optical simulations with fabrication of aspherical polymer microlenses through three-dimensional (3D) microprinting to correct for optical aberrations in long (length >6 mm) GRIN lens-based microendoscopes (diameter, 500 µm). Long corrected microendoscopes had improved spatial resolution, enabling imaging in significantly enlarged FOVs. Moreover, using synthetic calcium data we showed that aberration correction enabled detection of cells with higher SNR of fluorescent signals and decreased cross-contamination between neurons. Finally, we applied long corrected microendoscopes to perform large-scale and high-precision recordings of calcium signals in populations of neurons in the olfactory cortex, a brain region laying approximately 5 mm from the brain surface, of awake head-fixed mice. Long corrected microendoscopes are powerful new tools enabling population imaging with unprecedented large FOV and high spatial resolution in the most ventral regions of the mouse brain.

    1. Neuroscience
    Yiheng Zhang, Yun Chen ... He Cui
    Research Article

    Although recent studies suggest that activity in the motor cortex, in addition to generating motor outputs, receives substantial information regarding sensory inputs, it is still unclear how sensory context adjusts the motor commands. Here, we recorded population neural activity in the motor cortex via microelectrode arrays while monkeys performed flexible manual interceptions of moving targets. During this task, which requires predictive sensorimotor control, the activity of most neurons in the motor cortex encoding upcoming movements was influenced by ongoing target motion. Single-trial neural states at the movement onset formed staggered orbital geometries, suggesting that target motion modulates peri-movement activity in an orthogonal manner. This neural geometry was further evaluated with a representational model and recurrent neural networks (RNNs) with task-specific input-output mapping. We propose that the sensorimotor dynamics can be derived from neuronal mixed sensorimotor selectivity and dynamic interaction between modulations.