A multidisciplinary approach to a unique Palaeolithic human ichnological record from Italy (Bàsura Cave)

  1. Marco Romano  Is a corresponding author
  2. Paolo Citton
  3. Isabella Salvador
  4. Daniele Arobba
  5. Ivano Rellini
  6. Marco Firpo
  7. Fabio Negrino
  8. Marta Zunino
  9. Elisabetta Starnini
  10. Marco Avanzini
  1. University of the Witwatersrand, South Africa
  2. CONICET-Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
  3. MUSE, Museo delle Scienze, Italy
  4. Museo Archeologico del Finale, Italy
  5. Università degli Studi di Genova, Italy
  6. Grotte di Toirano, Italy
  7. Università di Pisa, Italy

Abstract

Based on the integration of laser scans, sedimentology, geochemistry, archeobotany, geometric morphometrics and photogrammetry, here we present evidence testifying that a Palaeolithic group of people explored a deep cave in northern Italy about 14 ky cal. BP. Ichnological data enable us to shed light on individual and group level behavior, social relationship, and mode of exploration of the uneven terrain. Five individuals, two adults, an adolescent and two children, entered the cave barefoot and illuminated the way with a bunch of wooden sticks. Traces of crawling locomotion are documented for the first time in the global human ichnological record. Anatomical details recognizable in the crawling traces show that no clothing was present between limbs and the trampled sediments. Our study demonstrates that very young children (the youngest about three years old) were active members of the Upper Palaeolithic populations, even in apparently dangerous and social activities.

Data availability

All the data are included in Tables within the main text

Article and author information

Author details

  1. Marco Romano

    Evolutionary Studies Institute (ESI), School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
    For correspondence
    marco.romano@uniroma1.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7629-3872
  2. Paolo Citton

    CONICET-Consejo Nacional de Investigaciones Científicas y Técnicas, General Roca, Argentina
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6503-5541
  3. Isabella Salvador

    Department of Geology and Palaeontology, MUSE, Museo delle Scienze, Trento, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1058-3994
  4. Daniele Arobba

    Museo Archeologico del Finale, Savona, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6946-7579
  5. Ivano Rellini

    Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Genoa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Marco Firpo

    Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Genoa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Fabio Negrino

    Dipartimento di Antichità, Filosofia e Storia (DAFIST), Università degli Studi di Genova, Genoa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Marta Zunino

    Grotte di Toirano, Toirano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  9. Elisabetta Starnini

    Dipartimento di Civiltà e Forme del Sapere, Università di Pisa, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  10. Marco Avanzini

    Department of Geology and Palaeontology, MUSE, Museo delle Scienze, Trento, Italy
    Competing interests
    The authors declare that no competing interests exist.

Funding

Comune di Toirano

  • Elisabetta Starnini

Università di Genova

  • Ivano Rellini
  • Marco Firpo
  • Fabio Negrino

MUSE

  • Isabella Salvador
  • Marco Avanzini

The funders provide financial assistence for fieldwork and publication fees

Reviewing Editor

  1. Jessica C. Thompson, Yale University, United States

Version history

  1. Received: January 15, 2019
  2. Accepted: May 5, 2019
  3. Accepted Manuscript published: May 14, 2019 (version 1)
  4. Version of Record published: June 4, 2019 (version 2)

Copyright

© 2019, Romano et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,390
    Page views
  • 470
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marco Romano
  2. Paolo Citton
  3. Isabella Salvador
  4. Daniele Arobba
  5. Ivano Rellini
  6. Marco Firpo
  7. Fabio Negrino
  8. Marta Zunino
  9. Elisabetta Starnini
  10. Marco Avanzini
(2019)
A multidisciplinary approach to a unique Palaeolithic human ichnological record from Italy (Bàsura Cave)
eLife 8:e45204.
https://doi.org/10.7554/eLife.45204

Share this article

https://doi.org/10.7554/eLife.45204

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Thomas A Sasani, Aaron R Quinlan, Kelley Harris
    Research Article

    Maintaining germline genome integrity is essential and enormously complex. Although many proteins are involved in DNA replication, proofreading, and repair, mutator alleles have largely eluded detection in mammals. DNA replication and repair proteins often recognize sequence motifs or excise lesions at specific nucleotides. Thus, we might expect that the spectrum of de novo mutations – the frequencies of C>T, A>G, etc. – will differ between genomes that harbor either a mutator or wild-type allele. Previously, we used quantitative trait locus mapping to discover candidate mutator alleles in the DNA repair gene Mutyh that increased the C>A germline mutation rate in a family of inbred mice known as the BXDs (Sasani et al., 2022, Ashbrook et al., 2021). In this study we developed a new method to detect alleles associated with mutation spectrum variation and applied it to mutation data from the BXDs. We discovered an additional C>A mutator locus on chromosome 6 that overlaps Ogg1, a DNA glycosylase involved in the same base-excision repair network as Mutyh (David et al., 2007). Its effect depends on the presence of a mutator allele near Mutyh, and BXDs with mutator alleles at both loci have greater numbers of C>A mutations than those with mutator alleles at either locus alone. Our new methods for analyzing mutation spectra reveal evidence of epistasis between germline mutator alleles and may be applicable to mutation data from humans and other model organisms.

    1. Chromosomes and Gene Expression
    2. Evolutionary Biology
    Katherine Rickelton, Trisha M Zintel ... Courtney C Babbitt
    Research Article Updated

    Primate evolution has led to a remarkable diversity of behavioral specializations and pronounced brain size variation among species (Barton, 2012; DeCasien and Higham, 2019; Powell et al., 2017). Gene expression provides a promising opportunity for studying the molecular basis of brain evolution, but it has been explored in very few primate species to date (e.g. Khaitovich et al., 2005; Khrameeva et al., 2020; Ma et al., 2022; Somel et al., 2009). To understand the landscape of gene expression evolution across the primate lineage, we generated and analyzed RNA-seq data from four brain regions in an unprecedented eighteen species. Here, we show a remarkable level of variation in gene expression among hominid species, including humans and chimpanzees, despite their relatively recent divergence time from other primates. We found that individual genes display a wide range of expression dynamics across evolutionary time reflective of the diverse selection pressures acting on genes within primate brain tissue. Using our samples that represent a 190-fold difference in primate brain size, we identified genes with variation in expression most correlated with brain size. Our study extensively broadens the phylogenetic context of what is known about the molecular evolution of the brain across primates and identifies novel candidate genes for the study of genetic regulation of brain evolution.