A bacterial riboswitch class for the thiamin precursor HMP-PP employs a terminator-embedded aptamer

Abstract

We recently implemented a bioinformatics pipeline that can uncover novel, but rare, riboswitch candidates as well as other noncoding RNA structures in bacteria. A prominent candidate revealed by our initial search efforts was called the 'thiS motif' because of its frequent association with a gene coding for the ThiS protein, which delivers sulfur to form the thiazole moiety of the thiamin precursor HET-P. In the current report, we describe biochemical and genetic data demonstrating that thiS motif RNAs function as sensors of the thiamin precursor HMP-PP, which is fused with HET-P ultimately to form the final active coenzyme thiamin pyrophosphate (TPP). HMP-PP riboswitches exhibit a distinctive architecture wherein an unusually small ligand-sensing aptamer is almost entirely embedded within an otherwise classic intrinsic transcription terminator stem. This arrangement yields remarkably compact genetic switches that bacteria use to tune the levels of thiamin precursors during the biosynthesis of this universally distributed coenzyme.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Ruben M Atilho

    Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Gayan Mirihana Arachchilage

    Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Etienne B Greenlee

    Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kirsten M Knecht

    Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ronald R Breaker

    Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
    For correspondence
    ronald.breaker@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2165-536X

Funding

National Institutes of Health (P01 GM022778)

  • Ronald R Breaker

National Science Foundation (Graduate Student Fellowship)

  • Ruben M Atilho

Howard Hughes Medical Institute (Investigator Funding)

  • Ronald R Breaker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ailong Ke, Cornell University

Version history

  1. Received: January 15, 2019
  2. Accepted: April 4, 2019
  3. Accepted Manuscript published: April 5, 2019 (version 1)
  4. Version of Record published: April 23, 2019 (version 2)

Copyright

© 2019, Atilho et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,313
    views
  • 382
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ruben M Atilho
  2. Gayan Mirihana Arachchilage
  3. Etienne B Greenlee
  4. Kirsten M Knecht
  5. Ronald R Breaker
(2019)
A bacterial riboswitch class for the thiamin precursor HMP-PP employs a terminator-embedded aptamer
eLife 8:e45210.
https://doi.org/10.7554/eLife.45210

Share this article

https://doi.org/10.7554/eLife.45210

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Richard Sejour, Janet Leatherwood ... Bruce Futcher
    Research Article

    Previously, Tuller et al. found that the first 30–50 codons of the genes of yeast and other eukaryotes are slightly enriched for rare codons. They argued that this slowed translation, and was adaptive because it queued ribosomes to prevent collisions. Today, the translational speeds of different codons are known, and indeed rare codons are translated slowly. We re-examined this 5’ slow translation ‘ramp.’ We confirm that 5’ regions are slightly enriched for rare codons; in addition, they are depleted for downstream Start codons (which are fast), with both effects contributing to slow 5’ translation. However, we also find that the 5’ (and 3’) ends of yeast genes are poorly conserved in evolution, suggesting that they are unstable and turnover relatively rapidly. When a new 5’ end forms de novo, it is likely to include codons that would otherwise be rare. Because evolution has had a relatively short time to select against these codons, 5’ ends are typically slightly enriched for rare, slow codons. Opposite to the expectation of Tuller et al., we show by direct experiment that genes with slowly translated codons at the 5’ end are expressed relatively poorly, and that substituting faster synonymous codons improves expression. Direct experiment shows that slow codons do not prevent downstream ribosome collisions. Further informatic studies suggest that for natural genes, slow 5’ ends are correlated with poor gene expression, opposite to the expectation of Tuller et al. Thus, we conclude that slow 5’ translation is a ‘spandrel’--a non-adaptive consequence of something else, in this case, the turnover of 5’ ends in evolution, and it does not improve translation.

    1. Biochemistry and Chemical Biology
    Boglarka Zambo, Evelina Edelweiss ... Gergo Gogl
    Research Article

    Truncation of the protein-protein interaction SH3 domain of the membrane remodeling Bridging Integrator 1 (BIN1, Amphiphysin 2) protein leads to centronuclear myopathy. Here, we assessed the impact of a set of naturally observed, previously uncharacterized BIN1 SH3 domain variants using conventional in vitro and cell-based assays monitoring the BIN1 interaction with dynamin 2 (DNM2) and identified potentially harmful ones that can be also tentatively connected to neuromuscular disorders. However, SH3 domains are typically promiscuous and it is expected that other, so far unknown partners of BIN1 exist besides DNM2, that also participate in the development of centronuclear myopathy. In order to shed light on these other relevant interaction partners and to get a holistic picture of the pathomechanism behind BIN1 SH3 domain variants, we used affinity interactomics. We identified hundreds of new BIN1 interaction partners proteome-wide, among which many appear to participate in cell division, suggesting a critical role of BIN1 in the regulation of mitosis. Finally, we show that the identified BIN1 mutations indeed cause proteome-wide affinity perturbation, signifying the importance of employing unbiased affinity interactomic approaches.