Abstract

The ability to isolate rare live cells within a heterogeneous population based solely on visual criteria remains technically challenging, due largely to limitations imposed by existing sorting technologies. Here we present a new method that permits labeling cells of interest by attaching streptavidin-coated magnetic beads to their membranes using the lasers of a confocal microscope. A simple magnet allows highly-specific isolation of the labeled cells, which then remain viable and proliferate normally. As proof of principle, we tagged, isolated, and expanded individual cells based on three biologically-relevant visual characteristics: i) presence of multiple nuclei, ii) accumulation of lipid vesicles, and iii) ability to resolve ionizing radiation-induced DNA damage foci. Our method constitutes a rapid, efficient, and cost-effective approach for isolation and subsequent characterization of rare cells based on observable traits such as movement, shape, or location, which in turn can generate novel mechanistic insights into important biological processes.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Loïc Binan

    Research Center, Maisonneuve-Rosemont Hospital, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. François Bélanger

    Research Center, Maisonneuve-Rosemont Hospital, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Maxime Uriarte

    Research Center, Maisonneuve-Rosemont Hospital, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Jean François Lemay

    Research Center, Maisonneuve-Rosemont Hospital, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3540-1627
  5. Jean Christophe Pelletier De Koninck

    Research Center, Maisonneuve-Rosemont Hospital, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Joannie Roy

    Research Center, Maisonneuve-Rosemont Hospital, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. El Bachir Affar

    Research Center, Maisonneuve-Rosemont Hospital, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Elliot Drobetsky

    Research Center, Maisonneuve-Rosemont Hospital, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Hugo Wurtele

    Research Center, Maisonneuve-Rosemont Hospital, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Santiago Costantino

    Research Center, Maisonneuve-Rosemont Hospital, Montreal, Canada
    For correspondence
    santiago.costantino@umontreal.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2454-2635

Funding

Canadian Institutes of Health Research

  • El Bachir Affar
  • Elliot Drobetsky
  • Hugo Wurtele

Natural Sciences and Engineering Research Council of Canada

  • El Bachir Affar
  • Elliot Drobetsky
  • Hugo Wurtele
  • Santiago Costantino

Genome Canada

  • Santiago Costantino

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Binan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,216
    views
  • 328
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Loïc Binan
  2. François Bélanger
  3. Maxime Uriarte
  4. Jean François Lemay
  5. Jean Christophe Pelletier De Koninck
  6. Joannie Roy
  7. El Bachir Affar
  8. Elliot Drobetsky
  9. Hugo Wurtele
  10. Santiago Costantino
(2019)
Opto-magnetic capture of individual cells based on visual phenotypes
eLife 8:e45239.
https://doi.org/10.7554/eLife.45239

Share this article

https://doi.org/10.7554/eLife.45239

Further reading

    1. Cancer Biology
    Qianqian Ju, Wenjing Sheng ... Cheng Sun
    Research Article

    TAK1 is a serine/threonine protein kinase that is a key regulator in a wide variety of cellular processes. However, the functions and mechanisms involved in cancer metastasis are still not well understood. Here, we found that TAK1 knockdown promoted esophageal squamous cancer carcinoma (ESCC) migration and invasion, whereas TAK1 overexpression resulted in the opposite outcome. These in vitro findings were recapitulated in vivo in a xenograft metastatic mouse model. Mechanistically, co-immunoprecipitation and mass spectrometry demonstrated that TAK1 interacted with phospholipase C epsilon 1 (PLCE1) and phosphorylated PLCE1 at serine 1060 (S1060). Functional studies revealed that phosphorylation at S1060 in PLCE1 resulted in decreased enzyme activity, leading to the repression of phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis. As a result, the degradation products of PIP2 including diacylglycerol (DAG) and inositol IP3 were reduced, which thereby suppressed signal transduction in the axis of PKC/GSK-3β/β-Catenin. Consequently, expression of cancer metastasis-related genes was impeded by TAK1. Overall, our data indicate that TAK1 plays a negative role in ESCC metastasis, which depends on the TAK1-induced phosphorylation of PLCE1 at S1060.

    1. Cancer Biology
    2. Cell Biology
    Rui Hua, Jean X Jiang
    Insight

    Cell crowding causes high-grade breast cancer cells to become more invasive by activating a molecular switch that causes the cells to shrink and spread.