Francisella tularensis enters a double membraned compartment following cell-cell transfer

  1. Shaun P Steele  Is a corresponding author
  2. Zach Chamberlain
  3. Jason Park
  4. Thomas H Kawula
  1. Washington State University, United States

Abstract

Previously, we found that phagocytic cells ingest bacteria directly from the cytosol of infected cells without killing the initially infected cell (Steele et al. 2016). Here, we explored the events immediately following bacterial transfer. Francisella tularensis bacteria acquired from infected cells were found within double-membrane vesicles partially composed from the donor cell plasma membrane. As with phagosomal escape, the F. tularensis Type VI Secretion System (T6SS) was required for vacuole escape. We constructed a T6SS inducible strain and established conditions where this strain is trapped in vacuoles of cells infected through bacterial transfer. Using this strain we identified bacterial transfer events in the lungs of infected mice, demonstrating that this process occurs in infected animals. These data and electron microscopy analysis of the transfer event revealed that macrophages acquire cytoplasm and membrane components of other cells through a process that is distinct from, but related to phagocytosis.

Data availability

All data generated and analyzed in this study are included in the manuscript.

Article and author information

Author details

  1. Shaun P Steele

    School of Global Animal Health, Washington State University, Pullman, United States
    For correspondence
    shaun.steele@wsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3760-329X
  2. Zach Chamberlain

    School of Global Animal Health, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jason Park

    School of Global Animal Health, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas H Kawula

    School of Global Animal Health, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Allergy and Infectious Diseases (AI082870)

  • Thomas H Kawula

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animals were handled according to approved institutional animal care and use committee (IACUC) protocol #4946 at Washington State University.

Reviewing Editor

  1. Sophie Helaine, Imperial College London, United Kingdom

Version history

  1. Received: January 25, 2019
  2. Accepted: April 18, 2019
  3. Accepted Manuscript published: April 24, 2019 (version 1)
  4. Version of Record published: May 3, 2019 (version 2)

Copyright

© 2019, Steele et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,440
    Page views
  • 297
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shaun P Steele
  2. Zach Chamberlain
  3. Jason Park
  4. Thomas H Kawula
(2019)
Francisella tularensis enters a double membraned compartment following cell-cell transfer
eLife 8:e45252.
https://doi.org/10.7554/eLife.45252

Further reading

    1. Microbiology and Infectious Disease
    2. Plant Biology
    Christopher Kesten, Valentin Leitner ... Clara Sanchez-Rodriguez
    Research Article

    Purinergic signaling activated by extracellular nucleotides and their derivative nucleosides trigger sophisticated signaling networks. The outcome of these pathways determine the capacity of the organism to survive under challenging conditions. Both extracellular ATP (eATP) and Adenosine (eAdo) act as primary messengers in mammals, essential for immunosuppressive responses. Despite the clear role of eATP as a plant damage-associated molecular pattern, the function of its nucleoside, eAdo, and of the eAdo/eATP balance in plant stress response remain to be fully elucidated. This is particularly relevant in the context of plant-microbe interaction, where the intruder manipulates the extracellular matrix. Here, we identify Ado as a main molecule secreted by the vascular fungus Fusarium oxysporum. We show that eAdo modulates the plant's susceptibility to fungal colonization by altering the eATP-mediated apoplastic pH homeostasis, an essential physiological player during the infection of this pathogen. Our work indicates that plant pathogens actively imbalance the apoplastic eAdo/eATP levels as a virulence mechanism.

    1. Microbiology and Infectious Disease
    Qibin Geng, Yushun Wan ... Fang Li
    Research Article

    SARS-CoV-2 spike protein plays a key role in mediating viral entry and inducing host immune responses. It can adopt either an open or closed conformation based on the position of its receptor-binding domain (RBD). It is yet unclear what cause these conformational changes or how they influence the spike's functions. Here we show that Lys417 in the RBD plays dual roles in the spike's structure: it stabilizes the closed conformation of the trimeric spike by mediating inter-spike-subunit interactions; it also directly interacts with ACE2 receptor. Hence, a K417V mutation has opposing effects on the spike's function: it opens up the spike for better ACE2 binding while weakening the RBD's direct binding to ACE2. The net outcomes of this mutation are to allow the spike to bind ACE2 with higher probability, mediate viral entry more efficiently, but become more exposed to neutralizing antibodies. Given that residue 417 has been a viral mutational hotspot, SARS-CoV-2 may have been evolving to strike a balance between infection potency and immune evasion, contributing to its pandemic spread.