Abstract

During CNS development there is prominent expansion of the anterior region, the brain. In Drosophila, anterior CNS expansion emerges from three rostral features: 1) increased progenitor cell generation, 2) extended progenitor cell proliferation, 3) more proliferative daughters. We find that tailless (mouse Nr2E1/Tlx), otp/Rx/hbn (Otp/Arx/Rax) and Doc1/2/3 (Tbx2/3/6) are important for brain progenitor generation. These genes, and earmuff (FezF1/2), are also important for subsequent progenitor and/or daughter cell proliferation in the brain. Brain TF co-misexpression can drive brain-profile proliferation in the nerve cord, and can reprogram developing wing discs into brain neural progenitors. Brain TF expression is promoted by the PRC2 complex, acting to keep the brain free of anti-proliferative and repressive action of Hox homeotic genes. Hence, anterior expansion of the Drosophila CNS is mediated by brain TF driven 'super-generation' of progenitors, as well as 'hyper-proliferation' of progenitor and daughter cells, promoted by PRC2-mediated repression of Hox activity.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Jesús Rodriguez Curt

    Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Behzad Yaghmaeian Salmani

    Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Stefan Thor

    Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
    For correspondence
    stefan.thor@liu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5095-541X

Funding

Knut och Alice Wallenbergs Stiftelse (KAW2011.0165)

  • Stefan Thor

Vetenskapsrådet (621-2013-5258)

  • Stefan Thor

Cancerfonden (140780; 150663)

  • Stefan Thor

Knut och Alice Wallenbergs Stiftelse (KAW2012.0101)

  • Stefan Thor

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Curt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,153
    views
  • 330
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jesús Rodriguez Curt
  2. Behzad Yaghmaeian Salmani
  3. Stefan Thor
(2019)
Anterior CNS expansion driven by brain transcription factors
eLife 8:e45274.
https://doi.org/10.7554/eLife.45274

Share this article

https://doi.org/10.7554/eLife.45274