Translation affects mRNA stability in a codon dependent manner in human cells
Abstract
mRNA translation decodes nucleotide into amino acid sequences. However, translation has also been shown to affect mRNA stability depending on codon composition in model organisms, although universality of this mechanism remains unclear. Here, using three independent approaches to measure exogenous and endogenous mRNA decay, we define which codons are associated with stable or unstable mRNAs in human cells. We demonstrate that the regulatory information affecting mRNA stability is encoded in codons and not in nucleotides. Stabilizing codons tend to be associated with higher tRNA levels and higher charged/total tRNA ratios. While mRNAs enriched in destabilizing codons tend to possess shorter poly(A)-tails, the poly(A)-tail is not required for the codon-mediated mRNA stability. This mechanism depends on translation; however, the number of ribosome loads into a mRNA modulates the codon-mediated effects on gene expression. This work provides definitive evidence that translation strongly affects mRNA stability in a codon-dependent manner in human cells.
Data availability
The following datasets have been uploaded to NCBI GSE, under the accession number GSE126523.Endogenous mRNA decay:1.293T: 0h, 0h, 1h, 2h,3h,6h,6h2.Hela: 0h,0h,1h,2h,3h,4h,5h,6h,6h3.RPE: 0h,0h,1h,2h,3h,4h,5h,6h,6hORFome:1.293t: 0h, 0h, 1h, 1h, 2h, 2h, 3h, 3h, 4h, 4h, 5h, 5h, 6h, 6h2.K562: 0h, 0h, 1h, 1h, 2h, 2h, 3h, 3h, 4h, 4h, 5h, 5h, 6h, 6hSLAM-seq:1.K562: 0h, 0h, 0h, 2h, 2h, 2h, 4h, 4h, 4h, 6h, 6h, 6h
-
HSV1 infection dataNCBI Gene Expression Omnibus, GSE59717.
-
hydro- tRNA seq, table S1NCBI Gene Expression Omnibus,GSE95683.
-
TGIRT tRNA seq and charged ratioNCBI Gene Expression Omnibus, GSE97259.
-
TAIL-seq helaNCBI Gene Expression Omnibus, GSE54114.
-
PAL-seq 293TNCBI Gene Expression Omnibus, GSE52809.
Article and author information
Author details
Funding
Stowers Institute for Medical Research
- Ariel Alejandro Bazzini
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the zebrafish were handled according to approved institutional animal care and use committee (IACUC) protocols (#2016-0159) of the Stowers Institute for Medical Research. The protocol was approved on August 18th 2018.
Copyright
© 2019, Wu et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 21,778
- views
-
- 2,570
- downloads
-
- 211
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
- Chromosomes and Gene Expression
Hyperactive interferon (IFN) signaling is a hallmark of Down syndrome (DS), a condition caused by Trisomy 21 (T21); strategies that normalize IFN signaling could benefit this population. Mediator-associated kinases CDK8 and CDK19 drive inflammatory responses through incompletely understood mechanisms. Using sibling-matched cell lines with/without T21, we investigated Mediator kinase function in the context of hyperactive IFN in DS over a 75 min to 24 hr timeframe. Activation of IFN-response genes was suppressed in cells treated with the CDK8/CDK19 inhibitor cortistatin A (CA), via rapid suppression of IFN-responsive transcription factor (TF) activity. We also discovered that CDK8/CDK19 affect splicing, a novel means by which Mediator kinases control gene expression. To further probe Mediator kinase function, we completed cytokine screens and metabolomics experiments. Cytokines are master regulators of inflammatory responses; by screening 105 different cytokine proteins, we show that Mediator kinases help drive IFN-dependent cytokine responses at least in part through transcriptional regulation of cytokine genes and receptors. Metabolomics revealed that Mediator kinase inhibition altered core metabolic pathways in cell type-specific ways, and broad upregulation of anti-inflammatory lipid mediators occurred specifically in kinase-inhibited cells during hyperactive IFNγ signaling. A subset of these lipids (e.g. oleamide, desmosterol) serve as ligands for nuclear receptors PPAR and LXR, and activation of these receptors occurred specifically during hyperactive IFN signaling in CA-treated cells, revealing mechanistic links between Mediator kinases, lipid metabolism, and nuclear receptor function. Collectively, our results establish CDK8/CDK19 as context-specific metabolic regulators, and reveal that these kinases control gene expression not only via TFs, but also through metabolic changes and splicing. Moreover, we establish that Mediator kinase inhibition antagonizes IFN signaling through transcriptional, metabolic, and cytokine responses, with implications for DS and other chronic inflammatory conditions.
-
- Chromosomes and Gene Expression
Specialized magnetic beads that bind target proteins to a cryogenic electron microscopy grid make it possible to study the structure of protein complexes from dilute samples.