Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models

  1. M Catarina Silva
  2. Fleur M Ferguson
  3. Quan Cai
  4. Katherine A Donovan
  5. Ghata Nandi
  6. Debasis Patnaik
  7. Tinghu Zhang
  8. Hai-Tsang Huang
  9. Diane E Lucente
  10. Bradford C Dickerson
  11. Timothy J Mitchison
  12. Eric S Fischer
  13. Nathanael S Gray  Is a corresponding author
  14. Stephen J Haggarty  Is a corresponding author
  1. Massachusetts General Hospital, Harvard Medical School, United States
  2. Dana-Farber Cancer Institute, United States
  3. Harvard Medical School, United States
16 figures, 1 table and 5 additional files

Figures

Figure 1 with 2 supplements
Design and working model for a new hetero-bifunctional tau degrader.

(A) A degrader molecule was designed to preferentially recognize disease-associated forms of tau (Module 1), and simultaneously engage with CRBN in the CRL4CRBN E3 ubiquitin ligase complex (Module …

https://doi.org/10.7554/eLife.45457.002
Figure 1—figure supplement 1
In vitro characterization of tau-binding affinity to QC-01–175 and control compounds.

(A) Association-dissociation curves for BLI biosensor measurements (64 μM compound is shown, except for PE859 at 50 μM) and (B) BLI steady-state graphs, representing human recombinant …

https://doi.org/10.7554/eLife.45457.003
Figure 1—figure supplement 2
QC-01–175 effect on MAO activity.

(A) Monoamine oxidase activity assay shows that the inhibitory effect of T807 is greater than that of QC-01–175. Parnate is a known MAO inhibitor (positive control) and pomalidomide is used as a …

https://doi.org/10.7554/eLife.45457.004
Figure 2 with 2 supplements
Concentration effect of QC-01–175 

(A) on tau protein levels of A152T and control neurons. Analysis of total tau (TAU5) and phospho-tau (S396 P-tau) levels upon treatment by western blot (B) and ELISA (C). Analysis of total tau …

https://doi.org/10.7554/eLife.45457.005
Figure 2—source data 1

Human neural cell lines derived from tauopathy-affected (progressive supranuclear palsy, PSP or behavioral variant of FTD, bvFTD) and age-matched unaffected individuals, and MAPT KO line employed in this study.

± refers to heterozygous variant carriers.

https://doi.org/10.7554/eLife.45457.008
Figure 2—source data 2

Numerical description and statistics for data presented in Figure 2 and respective supplement 2 ELISAs.

https://doi.org/10.7554/eLife.45457.009
Figure 2—figure supplement 1
Variability of the effect of QC-01–175 across biological replicates.

(A– I) Western blot analysis of total tau (TAU5) and S396 P-Tau protein, upon 24 hr treatment with QC-01–175 or the negative controls lenalidomide, T807 and QC-03–075. Assessment of the variability …

https://doi.org/10.7554/eLife.45457.006
Figure 2—figure supplement 2
Demonstration of QC-01–175 effect in tau-P301L neurons.

(A-B) Concentration effect of QC-01–175 and QC-03–075 on total tau (TAU5) and S396 P-Tau by ELISA, in P301L neurons at 6 weeks of differentiation. Data points represent mean values of tau normalized …

https://doi.org/10.7554/eLife.45457.007
Figure 3 with 1 supplement
Mechanism of QC-01–175 clearance of tau is CRL4CRBN and UPS-dependent.

Neurons were pre-treated for 6 hr with (A) either CRBN ligand excess lenalidomide or tau ligand excess T807, (B) the NAE inhibitor MLN4924, the autophagy inhibitor Baf.A1, or (C) the proteasome …

https://doi.org/10.7554/eLife.45457.010
Figure 3—figure supplement 1
Additional specificity controls for QC-01–175-mediated tau clearance.

(A–C) Western blot and densitometry analysis of total tau, S396 P-tau and CRBN upon 24 hr treatment with QC-01–175 or the negative controls QC-03–075, T807 and a thalidomide analog, lenalidomide (1 …

https://doi.org/10.7554/eLife.45457.011
Demonstration of ternary complex formation in A152T neurons upon QC-01–175 treatment, by co-IP and western blot analysis.

Neurons (6-week differentiated) were treated for 4 hr with 1 μM QC-01–175 ± 30 min pre-treatment with proteasome inhibitors (carfilzomib or bortezomib at 5 μM), with the goal of capturing maximum …

https://doi.org/10.7554/eLife.45457.012
Figure 5 with 1 supplement
Comparative analysis of the effect of QC-01–175 at (A)

0.01 μM, (B) 0.1 μM, (C) 1 μM, and (D) 10 μM after 4 hr, 8 hr or 24 hr of treatment. Graph bars represent mean levels of total tau (TAU5) and S396 P-tau protein measured by ELISA, normalized to …

https://doi.org/10.7554/eLife.45457.013
Figure 5—source data 1

Numerical description and statistics for data presented in Figure 5 and respective supplement 1.

https://doi.org/10.7554/eLife.45457.014
Figure 5—figure supplement 1
Degrader concentration and time effect on tau, in A152T and P301L neurons.

(A–C) Concentration and time effect of QC-01–175 on total tau (TAU5) and S396 P-tau levels, in A152T 6-week differentiated neurons, treated for (A) a short 4 hr interval, (B) an intermediate 8 hr …

https://doi.org/10.7554/eLife.45457.015
Mass spectrometry-based proteomics to quantify the effect of QC-01–175 treatment on the proteome of A152T neurons.

6-week differentiated neurons were treated for 4 hr with (A) 1 μM of QC-01–175, (B) 1 μM of the negative control QC-03–075, or (C) 10 μM MLN4924 (NAE inhibitor, 30 min pre-treatment) and 1 μM of …

https://doi.org/10.7554/eLife.45457.016
QC-01–175 treatment rescued stress vulnerability of A152T neurons.

(A) Aβ(1-42) proteotoxicity causes concentration- and genotype-dependent loss of neuronal vulnerability, affecting preferentially A152T and P301L neurons, with a rescue by MAPT KO. Data points …

https://doi.org/10.7554/eLife.45457.017
Figure 7—source data 1

Numerical description and statistics for data presented.

https://doi.org/10.7554/eLife.45457.018
Synthesis route for the tau degrader QC-01-175.
https://doi.org/10.7554/eLife.45457.019
Chemical structure 1
3-(4-(4-nitropyridin-3-yl)phenyl)propan-1-ol (3)
https://doi.org/10.7554/eLife.45457.020
Chemical structure 2
3-(4-(3-((tert-butyldiphenylsilyl)oxy)propyl)phenyl)-4-nitropyridine (4)
https://doi.org/10.7554/eLife.45457.021
Chemical structure 3
7-(3-((tert-butyldiphenylsilyl)oxy)propyl)-5H-pyrido[4,3-b]indole (5)
https://doi.org/10.7554/eLife.45457.022
Chemical structure 4
tert-butyl 7-(3-((tert-butyldiphenylsilyl)oxy)propyl)-5H-pyrido[4,3-b]indole-5-carboxylate (6)
https://doi.org/10.7554/eLife.45457.023
Chemical structure 5
tert-butyl 7-(3-hydroxypropyl)-5H-pyrido[4,3-b]indole-5-carboxylate (7)
https://doi.org/10.7554/eLife.45457.024
Chemical structure 6
3-(5H-pyrido[4,3-b]indol-7-yl)propanoic acid (10)
https://doi.org/10.7554/eLife.45457.025
Chemical structure 8
QC-03-075: Was prepared according to Scheme 1.
https://doi.org/10.7554/eLife.45457.027

Tables

Key resources table
Reagent type (species)
or resource
DesignationSource or referenceIdentifiersAdditional information
Cell line (H. sapiens)8330–8-RC1Silva et al. (2016)
Stem Cell Reports.
Figure 2—source data 1.
Human iPSC-derived NPC
line, non-mutant tau.
Original fibroblasts GM08330
from Coriell Institute for
Medical Research.
Cell line (H. sapiens)MGH2069-RC1Seo et al. (2017) J.
Neuroscience. Manuscript
in preparation.
Figure 2—source data 1.
Human iPSC-derived NPC
line, non-mutant tau. Original
fibroblasts MGH-2069 from
Massachusetts General Hospital
Frontotemporal Dementia Clinic,
Massachusetts General
Hospital Neurodegeneration
Repository.
Cell line (H. sapiens)CTR2-L17-RC2Almeida et al., 2012 Cell
Reports. Silva et al. (2016)
Stem Cell Reports
Figure 2—source data 1. Human
iPSC-derived NPC line,
non-mutant tau.
Cell line (H. sapiens)FTD19-L5-RC6Silva et al. (2016)
Stem Cell Reports
Figure 2—source data 1.
Human iPSC-derived NPC
line, tau-A152T (NCBI
RefSeq NM_001123066;
rs143624519).
Cell line (H. sapiens)FTD19-L5-RC6;MAPT-KOSilva et al. (2016)
Stem Cell Reports
Figure 2—source data 1.
Human iPSC-derived NPC
FTD19-L5-RC6 line,
CRISPR/Cas9-engineered
MAPT knockout.
Cell line (H. sapiens)MGH2046-RC1Seo et al. (2017) J.
Neuroscience. Manuscript
in preparation.
Figure 2—source data 1.
Human iPSC-derived NPC
line, tau-P301L (NCBI
RefSeq NM_001123066;
rs63751273). Original
fibroblasts MGH-2046 from
Massachusetts General
Hospital Frontotemporal
Dementia Clinic, Massachusetts
General Hospital
Neurodegeneration
Repository.
AntibodyTAU5InvitrogenCat. AHB0042
RRID:AB_2536235
WB 1:1000
AntibodyTAU5AbCamCat. ab80579
RRID:AB_1603723
Co-IP
AntibodyTau K9JADAKO, AgilentCat. A002401-2IF 1:1000, WB 1:10,000
AntibodyP-Tau S396InvitrogenCat. 44752G
RRID:AB_1502108
WB 1:1000
AntibodyP-Tau PHF-1Dr. Peter DaviesAlbert Einstein
College of Medicine, NY
IF 1:400
AntibodyMAP2Chemicon,
Millipore
Cat. AB5543
RRID:AB_571049
IF 1:1000
AntibodyDDB1AbCamCat. ab109027
RRID:AB_10859111
WB 1:50,000/Co-IP
AntibodyCUL4ACell Signaling
Technology
Cat. 2699
RRID:AB_2086563
WB 1:1000
AntibodyCRBNProteinTechCat. 11435–1-AP
RRID:AB_2085739
WB 1:500
AntibodyUbiquitin, Ubi-1MilliporeCat. MAB1510
RRID:AB_2180556
WB 1:500
Antibodyβ-ActinSigma-AldrichCat. A1978
RRID:AB_476692
WB 1:10,000
AntibodyGAPDHAbCamCat. ab8245
RRID:AB_2107448
WB 1:5000
AntibodyAlexaFluor-488 2°
antibody
Life TechnologiesCat. A11039
RRID:AB_142924
IF 1:500
AntibodyAlexaFluor-594 2°
antibody
Life TechnologiesCat. A11012
RRID:AB_141359
IF 1:500
AntibodyAlexaFluor-594 2°
antibody
Life TechnologiesCat. A11032
RRID:AB_141672
IF 1:500
AntibodyAnti-mouse IgG,
HRP-linked
Cell Signaling
Technology
Cat. 7076S
RRID:AB_330924
Western blotting, 1:4000
AntibodyAnti-rabbit IgG,
HRP-linked
Cell Signaling
Technology
Cat. 7074S
RRID:AB_2099233
Western blotting, 1:4000
AntibodyHoechst 33342InvitrogenCat. H3570IF Nuclear stain, 1:1000
Peptide, Recombinant
Protein
Tau-441(WT),
Biotinylated
SignalChemCat. T08-54BN
Lot. H2681-10
Human recombinant
protein expressed in
E. coli cells.
Peptide, Recombinant
Protein
Tau-441(A152T) ProteinSignalChemCat. T08-56VN
Lot. B2157-7
Human recombinant
protein expressed in
E. coli cells, tag-free.
Accession no. P10636-8.
Peptide, Recombinant
Protein
Tau-441(P301L) ProteinSignalChemCat. T08-56FN
Lot. O917-2
Human recombinant
protein expressed in
E. coli cells, tag-free.
Accession no. P10636-8.
Peptide, Recombinant
Protein
Aβ(1-42)Enzo LifesciencesCat. ALX-151–002CAS No. 107761-42-2
Commercial Assay, KitEZ-Link
NHS-PEG4-Biotinylation Kit
Thermo Fisher
Scientific
Cat. 21455
Commercial Assay, KitMAO-Glo Assay KitPromegaCat. V1401
Commercial Assay, KitPierce BCA Protein
Assay Kit
Thermo Fisher
Scientific
Cat. 23227
Commercial Assay, KitHuman Total Tau ELISAInvitrogenCat. KHB0041
Commercial Assay, KitP-Tau[pS396] Human
ELISA
InvitrogenCat. KHB7031
Commercial Assay, KitELISA Compatible
Lysis Buffer
InvitrogenCat. FNN0011
Commercial Assay, KitImmunoprecipitation
Kit Dynabeads Protein G
Novex, Life
Technologies
Cat. 10007D
Commercial Assay, KitPierce IP Lysis BufferThermo Fisher
Scientific
Cat. 87787
Commercial Assay, KitTandem mass tag (TMT) reagentsThermo Fisher
Scientific
Cat. A34807
Commercial Assay, KitAlamarBlue Cell
Viability Reagent
Thermo Fisher
Scientific
Cat. DAL1025
Chemical Compound, DrugT807 (AV-1451)MedChem ExpressCat. HY-101184CAS No. 1415379-56-4
Chemical Compound, DrugT807 core scaffoldThis paper(Intermediate 10)Methods, Synthetic
methods general
protocols. Figure 1C.
Chemical Compound, DrugPomalidomideSigma AldrichCat. P0018CAS No. 19171-19-8
Chemical Compound, DrugLenalidomideSigma AldrichCat. 901558CAS No. 191732-72-6
Chemical Compound, DrugQC-01–175This paperMethods, Synthetic
methods general
protocols. Figure 1C.
Chemical Compound, DrugQC-03–075This paperMethods, Synthetic
methods general
protocols. Figure 1C.
Chemical Compound, DrugMLN4924MedChem ExpressCat. HY-70062CAS No. 905579-51-3
Chemical Compound, DrugBafilomycin A1Enzo LifeSciencesCat. BML-CM110CAS No. 88899-55-2
Chemical Compound, DrugCarfilzomibMedChem ExpressCat. HY-10455CAS No. 868540-17-4
Chemical Compound, DrugBortezomibSelleckchemCat. S1013CAS No. 179324-69-7
Chemical Compound, DrugPE859MedChem ExpressCat. HY-12662CAS No. 1402727-29-0
Chemical Compound, DrugParnate
(Tranylcypromine)
Sigma-AldrichCat. P8511CAS No. 1986-47-6
Chemical Compound, DrugProtease inhibitor
cocktail
RocheCat. 04 693 124 001
Chemical Compound, DrugPhosphatase
inhibitor cocktail 2
Sigma-AldrichCat. P5726
Software, AlgorithmData Acquisition HT 11.0ForteBio
(www.fortebio.com/octet-software.html)
Version 11
(BLI Analysis and
KD calculation)
Software, AlgorithmAdobe Photoshop CS5Adobe Photoshop
(www.adobe.com/Photoshop)
Version 12.0.4
(Histogram function,
western blots densitometry)
Software, AlgorithmGraphPad PrismGraphPad Prism
(www.graphpad.com)
Version 8
Software, AlgorithmProteome Discoverer 2.2Thermo Fisher ScientificRRID:SCR_014477Version 2.2
Software, AlgorithmR frameworkTeam RCR: A Language
and Environment for
Statistical Computing
http://www.R-project.org/;
accessed Nov. 1, 2017
R Version 3.5.1
– Feather Spray
Software, AlgorithmStatistical Analysis
Limma Package
(R framework)
BioconductorRitchie et al. (2015)
Nucleic Acids Res.
OtherOctet Red384 InstrumentForteBiohttps://www.fortebio.com/octet-red384.html
OtherIN Cell Analyzer 6000 Cell
Imaging System
GE Healthcare Life
Sciences
OtherEnVision Multilabel
Plate Reader
Perkin Elmer
OtherHPLCWaters 2489/2545
OtherUPLCWaters Aquity I UPLC
OtherHPLCAgilent 1260 Infinity II
LC System
OtherOrbitrap Fusion
Lumos mass spectrometer
Thermo Fisher ScientificIQLAAEGAAPFADBMBHQ
OtherProxeon EASY-nLC 1200
LC pump
Thermo Fisher ScientificLC140
OtherEasySpray ES803 75 μm
inner diameter
microcapillary column
Thermo Fisher ScientificES803

Additional files

Supplementary file 1

1H NMR Spectra of QC-01-175.

https://doi.org/10.7554/eLife.45457.028
Supplementary file 2

1H NMR Spectra of QC-03-075.

https://doi.org/10.7554/eLife.45457.029
Supplementary file 3

UPLC chromatogram and mass spectra of QC-01-175.

https://doi.org/10.7554/eLife.45457.030
Supplementary file 4

UPLC chromatogram and mass spectra of QC-03-075.

https://doi.org/10.7554/eLife.45457.031
Transparent reporting form
https://doi.org/10.7554/eLife.45457.032

Download links