DDR2 controls breast tumor stiffness and metastasis by regulating Integrin mediated mechanotransduction in CAFs

Abstract

Biomechanical changes in the tumor microenvironment influence tumor progression and metastases. Collagen content and fiber organization within the tumor stroma are major contributors to biomechanical changes (e., tumor stiffness) and correlated with tumor aggressiveness and outcome. What signals and in what cells control collagen organization within the tumors, and how, is not fully understood. We show in mouse breast tumors that the action of the collagen receptor DDR2 in CAFs controls tumor stiffness by reorganizing collagen fibers specifically at the tumor-stromal boundary. These changes were associated with lung metastases. The action of DDR2 in mouse and human CAFs, and tumors in vivo, was found to influence mechanotransduction by controlling full collagen-binding integrin activation via Rap1-mediated Talin1 and Kindlin2 recruitment. The action of DDR2 in tumor CAFs is thus critical for remodeling collagen fibers at the tumor-stromal boundary to generate a physically permissive tumor microenvironment for tumor cell invasion and metastases.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Samantha VH Bayer

    ICCE Institute, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Whitney R Grither

    ICCE Institute, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Audrey Brenot

    ICCE Institute, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Priscilla Y Hwang

    ICCE Institute, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Craig E Barcus

    ICCE Institute, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Melanie Ernst

    ICCE Institute, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8995-3507
  7. Patrick Pence

    ICCE Institute, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Christopher Walter

    Department of Mechanical Engineering, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Amit Pathak

    Department of Mechanical Engineering, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Gregory D Longmore

    ICCE Institute, Washington University in St Louis, St Louis, United States
    For correspondence
    glongmore@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7568-8151

Funding

National Institute for Health Research (R01 CA196205)

  • Gregory D Longmore

National Institute for Health Research (R01 CA223758)

  • Gregory D Longmore

National Institute for Health Research (U54 CA210173)

  • Gregory D Longmore

American Cancer Society (131342-PF-17-238-01-CSM)

  • Priscilla Y Hwang

National Institute for Health Research (F30 CA200386)

  • Samantha VH Bayer

National Institute for Health Research (T32 GM07200)

  • Samantha VH Bayer
  • Whitney R Grither

National Institute for Health Research (T32 CA113275)

  • Craig E Barcus

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health under protocol #20150145.

Reviewing Editor

  1. Joan Massagué, Memorial Sloan-Kettering Cancer Center, United States

Publication history

  1. Received: January 24, 2019
  2. Accepted: May 29, 2019
  3. Accepted Manuscript published: May 30, 2019 (version 1)
  4. Version of Record published: June 7, 2019 (version 2)

Copyright

© 2019, Bayer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,477
    Page views
  • 604
    Downloads
  • 42
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Samantha VH Bayer
  2. Whitney R Grither
  3. Audrey Brenot
  4. Priscilla Y Hwang
  5. Craig E Barcus
  6. Melanie Ernst
  7. Patrick Pence
  8. Christopher Walter
  9. Amit Pathak
  10. Gregory D Longmore
(2019)
DDR2 controls breast tumor stiffness and metastasis by regulating Integrin mediated mechanotransduction in CAFs
eLife 8:e45508.
https://doi.org/10.7554/eLife.45508

Further reading

    1. Cancer Biology
    Emily R Webb, Georgia L Dodd ... Valerie G Brunton
    Research Article Updated

    The adhesion protein Kindlin-1 is over-expressed in breast cancer where it is associated with metastasis-free survival; however, the mechanisms involved are poorly understood. Here, we report that Kindlin-1 promotes anti-tumor immune evasion in mouse models of breast cancer. Deletion of Kindlin-1 in Met-1 mammary tumor cells led to tumor regression following injection into immunocompetent hosts. This was associated with a reduction in tumor infiltrating Tregs. Similar changes in T cell populations were seen following depletion of Kindlin-1 in the polyomavirus middle T antigen (PyV MT)-driven mouse model of spontaneous mammary tumorigenesis. There was a significant increase in IL-6 secretion from Met-1 cells when Kindlin-1 was depleted and conditioned media from Kindlin-1-depleted cells led to a decrease in the ability of Tregs to suppress the proliferation of CD8+ T cells, which was dependent on IL-6. In addition, deletion of tumor-derived IL-6 in the Kindlin-1-depleted tumors reversed the reduction of tumor-infiltrating Tregs. Overall, these data identify a novel function for Kindlin-1 in regulation of anti-tumor immunity, and that Kindlin-1 dependent cytokine secretion can impact the tumor immune environment.

    1. Stem Cells and Regenerative Medicine
    2. Cancer Biology
    Rui Zhang, Qingxi Liu ... Wenjian Ma
    Research Article Updated

    Stem cells play critical roles both in the development of cancer and therapy resistance. Although mesenchymal stem cells (MSCs) can actively migrate to tumor sites, their impact on chimeric antigen receptor modified T cell (CAR-T) immunotherapy has been little addressed. Using an in vitro cell co-culture model including lymphoma cells and macrophages, here we report that CAR-T cell-mediated cytotoxicity was significantly inhibited in the presence of MSCs. MSCs caused an increase of CD4+ T cells and Treg cells but a decrease of CD8+ T cells. In addition, MSCs stimulated the expression of indoleamine 2,3-dioxygenase and programmed cell death-ligand 1 which contributes to the immune-suppressive function of tumors. Moreover, MSCs suppressed key components of the NLRP3 inflammasome by modulating mitochondrial reactive oxygen species release. Interestingly, all these suppressive events hindering CAR-T efficacy could be abrogated if the stanniocalcin-1 (STC1) gene, which encodes the glycoprotein hormone STC-1, was knockdown in MSC. Using xenograft mice, we confirmed that CAR-T function could also be inhibited by MSC in vivo, and STC1 played a critical role. These data revealed a novel function of MSC and STC-1 in suppressing CAR-T efficacy, which should be considered in cancer therapy and may also have potential applications in controlling the toxicity arising from the excessive immune response.