Closed-loop optogenetic activation of peripheral or central neurons modulates feeding in freely moving Drosophila

Abstract

Manipulating feeding circuits in freely moving animals is challenging, in part because the timing of sensory inputs is affected by the animal's behavior. To address this challenge in Drosophila, we developed the Sip-Triggered Optogenetic Behavior Enclosure ('STROBE'). The STROBE is a closed-looped system for real-time optogenetic activation of feeding flies, designed to evoke neural excitation coincident with food contact. We previously demonstrated the STROBE's utility in probing the valence of fly sensory neurons (Jaeger et al., 2018). Here we provide a thorough characterization of the STROBE system, demonstrate that STROBE-driven behavior is modified by hunger and the presence of taste ligands, and find that mushroom body dopaminergic input neurons and their respective post-synaptic partners drive opposing feeding behaviors following activation. Together, these results establish the STROBE as a new tool for dissecting fly feeding circuits and suggest a role for mushroom body circuits in processing naïve taste responses.

Data availability

All raw data is included as supplementary downloads

Article and author information

Author details

  1. Pierre-Yves Musso

    Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Pierre Junca

    Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Meghan Jelen

    Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Damian Feldman-Kiss

    Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Han Zhang

    Engineering Physics Program, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Rachel CW Chan

    Engineering Physics Program, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1009-6379
  7. Michael D Gordon

    Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
    For correspondence
    gordon@zoology.ubc.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5440-986X

Funding

Natural Sciences and Engineering Research Council of Canada (RGPIN-2016-03857)

  • Michael D Gordon

Natural Sciences and Engineering Research Council of Canada (RGPAS-49246-16)

  • Michael D Gordon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Musso et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,218
    views
  • 449
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pierre-Yves Musso
  2. Pierre Junca
  3. Meghan Jelen
  4. Damian Feldman-Kiss
  5. Han Zhang
  6. Rachel CW Chan
  7. Michael D Gordon
(2019)
Closed-loop optogenetic activation of peripheral or central neurons modulates feeding in freely moving Drosophila
eLife 8:e45636.
https://doi.org/10.7554/eLife.45636

Share this article

https://doi.org/10.7554/eLife.45636

Further reading

    1. Neuroscience
    Devanshi Piyush Shah, Pallavi Raj Sharma ... Arnab Barik
    Research Article

    Stress is a potent modulator of pain. Specifically, acute stress due to physical restraint induces stress-induced analgesia (SIA). However, where and how acute stress and pain pathways interface in the brain are poorly understood. Here, we describe how the dorsal lateral septum (dLS), a forebrain limbic nucleus, facilitates SIA through its downstream targets in the lateral hypothalamic area (LHA) of mice. Taking advantage of transsynaptic viral-genetic, optogenetic, and chemogenetic techniques, we show that the dLS→LHA circuitry is sufficient to drive analgesia and is required for SIA. Furthermore, our results reveal that the dLS→LHA pathway is opioid-dependent and modulates pain through the pro-nociceptive neurons in the rostral ventromedial medulla (RVM). Remarkably, we found that the inhibitory dLS neurons are recruited specifically when the mice struggle to escape under restraint and, in turn, inhibit excitatory LHA neurons. As a result, the RVM neurons downstream of LHA are disengaged, thus suppressing nociception. Together, we delineate a poly-synaptic pathway that can transform escape behavior in mice under restraint to acute stress into analgesia.

    1. Neuroscience
    Vincent Huson, Wade G Regehr
    Research Article

    Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings. We find that MFs evoke a continuum of responses in the UBC population, mediated by three different types of glutamate receptors that each convey a specialized component. AMPARs transmit timing information for single stimuli at up to 5 spikes/s, and for very brief bursts. A combination of mGluR2/3s (inhibitory) and mGluR1s (excitatory) mediates a continuum of delayed, and broadened responses to longer bursts, and to sustained high frequency activation. Variability in the mGluR2/3 component controls the time course of the onset of firing, and variability in the mGluR1 component controls the duration of prolonged firing. We conclude that the combination of glutamate receptor types allows each UBC to simultaneously convey different aspects of MF firing. These findings establish that UBCs are highly flexible circuit elements that provide diverse temporal transformations that are well suited to contribute to specialized processing in different regions of the cerebellar cortex.