Tumor suppressor SMARCB1 suppresses super-enhancers to govern hESC lineage determination

  1. Lee F Langer
  2. James M Ward
  3. Trevor K Archer  Is a corresponding author
  1. National Institute of Environmental Health Sciences, National Institutes of Health, United States

Abstract

The SWI/SNF complex is a critical regulator of pluripotency in human embryonic stem cells (hESCs), and individual subunits have varied and specific roles during development and in diseases. The core subunit SMARCB1 is required for early embryonic survival, and mutations can give rise to atypical teratoid/rhabdoid tumors (AT/RTs) in the pediatric central nervous system. We report that in contrast to other studied systems, SMARCB1 represses bivalent genes in hESCs and antagonizes chromatin accessibility at super-enhancers. Moreover, and consistent with its established role as a CNS tumor suppressor, we find that SMARCB1 is essential for neural induction but dispensable for mesodermal or endodermal differentiation. Mechanistically, we demonstrate that SMARCB1 is essential for hESC super-enhancer silencing in neural differentiation conditions. This genomic assessment of hESC chromatin regulation by SMARCB1 reveals a novel positive regulatory function at super-enhancers and a unique lineage-specific role in regulating hESC differentiation.

Data availability

All raw RNAseq and ATACseq data have been made available in NCBI's Gene Expression Omnibus (Edgar, 2002), with accession number GSE128351.

The following data sets were generated

Article and author information

Author details

  1. Lee F Langer

    Laboratory of Epigenetics and Stem Cell Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. James M Ward

    Laboratory of Epigenetics and Stem Cell Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Trevor K Archer

    Laboratory of Epigenetics and Stem Cell Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, United States
    For correspondence
    archer1@niehs.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7651-3644

Funding

National Institute of Environmental Health Sciences (Z01 ES071006-18)

  • Trevor K Archer

National Institute of General Medical Sciences (GM120018)

  • Lee F Langer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael R Green, Howard Hughes Medical Institute, University of Massachusetts Medical School, United States

Publication history

  1. Received: January 31, 2019
  2. Accepted: April 29, 2019
  3. Accepted Manuscript published: April 29, 2019 (version 1)
  4. Version of Record published: May 28, 2019 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,382
    Page views
  • 456
    Downloads
  • 20
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lee F Langer
  2. James M Ward
  3. Trevor K Archer
(2019)
Tumor suppressor SMARCB1 suppresses super-enhancers to govern hESC lineage determination
eLife 8:e45672.
https://doi.org/10.7554/eLife.45672

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Kanishk Jain, Matthew R Marunde ... Brian D Strahl
    Short Report Updated

    In nucleosomes, histone N-terminal tails exist in dynamic equilibrium between free/accessible and collapsed/DNA-bound states. The latter state is expected to impact histone N-termini availability to the epigenetic machinery. Notably, H3 tail acetylation (e.g. K9ac, K14ac, K18ac) is linked to increased H3K4me3 engagement by the BPTF PHD finger, but it is unknown if this mechanism has a broader extension. Here, we show that H3 tail acetylation promotes nucleosomal accessibility to other H3K4 methyl readers, and importantly, extends to H3K4 writers, notably methyltransferase MLL1. This regulation is not observed on peptide substrates yet occurs on the cis H3 tail, as determined with fully-defined heterotypic nucleosomes. In vivo, H3 tail acetylation is directly and dynamically coupled with cis H3K4 methylation levels. Together, these observations reveal an acetylation ‘chromatin switch’ on the H3 tail that modulates read-write accessibility in nucleosomes and resolves the long-standing question of why H3K4me3 levels are coupled with H3 acetylation.

    1. Chromosomes and Gene Expression
    Dylan C Sarver, Cheng Xu ... G William Wong
    Research Article

    The consequences of aneuploidy have traditionally been studied in cell and animal models in which the extrachromosomal DNA is from the same species. Here, we explore a fundamental question concerning the impact of aneuploidy on systemic metabolism using a non-mosaic transchromosomic mouse model (TcMAC21) carrying a near-complete human chromosome 21. Independent of diets and housing temperatures, TcMAC21 mice consume more calories, are hyperactive and hypermetabolic, remain consistently lean and profoundly insulin sensitive, and have a higher body temperature. The hypermetabolism and elevated thermogenesis are likely due to a combination of increased activity level and sarcolipin overexpression in the skeletal muscle, resulting in futile sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) activity and energy dissipation. Mitochondrial respiration is also markedly increased in skeletal muscle to meet the high ATP demand created by the futile cycle and hyperactivity. This serendipitous discovery provides proof-of-concept that sarcolipin-mediated thermogenesis via uncoupling of the SERCA pump can be harnessed to promote energy expenditure and metabolic health.