1. Cell Biology
  2. Human Biology and Medicine
Download icon

Impaired skeletal muscle mitochondrial pyruvate uptake rewires glucose metabolism to drive whole-body leanness

Research Article
  • Cited 6
  • Views 3,354
  • Annotations
Cite this article as: eLife 2019;8:e45873 doi: 10.7554/eLife.45873

Abstract

Metabolic cycles are a fundamental element of cellular and organismal function. Among the most critical in higher organisms is the Cori Cycle, the systemic cycling between lactate and glucose. Here, skeletal muscle-specific Mitochondrial Pyruvate Carrier (MPC) deletion in mice diverted pyruvate into circulating lactate. This switch disinhibited muscle fatty acid oxidation and drove Cori Cycling that contributed to increased energy expenditure. Loss of muscle MPC activity led to strikingly decreased adiposity with complete muscle mass and strength retention. Notably, despite decreasing muscle glucose oxidation, muscle MPC disruption increased muscle glucose uptake and whole-body insulin sensitivity. Furthermore, chronic and acute muscle MPC deletion accelerated fat mass loss on a normal diet after high fat diet-induced obesity. Our results illuminate the role of the skeletal muscle MPC as a whole-body carbon flux control point. They highlight the potential utility of decreasing muscle pyruvate utilization to ameliorate obesity and type 2 diabetes.

Article and author information

Author details

  1. Arpit Sharma

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Lalita Oonthonpan

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ryan D Sheldon

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Adam J Rauckhorst

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zhiyong Zhu

    Department of Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sean C Tompkins

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kevin Cho

    Department of Chemistry, Washington University in St Louis, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Wojciech J Grzesik

    Fraternal Order of the Eagles Diabetes Research Center (FOEDRC), University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Lawrence R Gray

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Diego A Scerbo

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Alvin D Pewa

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Emily M Cushing

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9495-802X
  13. Michael C Dyle

    Department of Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. James E Cox

    Department of Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Chris Adams

    Department of Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Brandon S Davies

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Richard K Shields

    Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Andrew W Norris

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Gary Patti

    FOEDRC Metabolomics Core Facility, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3748-6193
  20. Leonid V Zingman

    Department of Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Eric B Taylor

    Department of Biochemistry, University of Iowa, Iowa City, United States
    For correspondence
    eric-taylor@uiowa.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4549-6567

Funding

National Institutes of Health (DK104998)

  • Eric B Taylor

National Institutes of Health (GM007337)

  • Sean C Tompkins

National Institutes of Health (HL007638)

  • Adam J Rauckhorst

National Institutes of Health (DK101183)

  • Lawrence R Gray

American Diabetes Association (1-18-PDF-060)

  • Adam J Rauckhorst

National Institutes of Health (DK112751)

  • Diego A Scerbo

National Institutes of Health (AR059190)

  • Eric B Taylor

National Institutes of Health (HD084645)

  • Richard K Shields

National Institutes of Health (HD082109)

  • Richard K Shields

National Institutes of Health (DK092412)

  • Leonid V Zingman

National Institutes of Health (ES028365)

  • Gary Patti

National Institutes of Health (HL130146)

  • Brandon S Davies

National Institutes of Health (HL007344)

  • Ryan D Sheldon

National Institutes of Health (DK116522)

  • Ryan D Sheldon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal work was performed in accordance with the University of Iowa Animal Use and Care Committee (IACUC). The University of Iowa IACUC is accredited by AALACi (#000833), is a Registered United States Department of Agriculture research facility (USDA No. 42-R-0004), and has PHS Approved Animal Welfare Assurance (#D16-00009).

Reviewing Editor

  1. David E James, The University of Sydney, Australia

Publication history

  1. Received: February 7, 2019
  2. Accepted: July 15, 2019
  3. Accepted Manuscript published: July 15, 2019 (version 1)
  4. Accepted Manuscript updated: July 18, 2019 (version 2)
  5. Version of Record published: August 6, 2019 (version 3)

Copyright

© 2019, Sharma et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,354
    Page views
  • 611
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Niladri K Sinha et al.
    Research Article

    Translation of aberrant mRNAs induces ribosomal collisions, thereby triggering pathways for mRNA and nascent peptide degradation and ribosomal rescue. Here we use sucrose gradient fractionation combined with quantitative proteomics to systematically identify proteins associated with collided ribosomes. This approach identified Endothelial differentiation-related factor 1 (EDF1) as a novel protein recruited to collided ribosomes during translational distress. Cryo-electron microscopic analyses of EDF1 and its yeast homolog Mbf1 revealed a conserved 40S ribosomal subunit binding site at the mRNA entry channel near the collision interface. EDF1 recruits the translational repressors GIGYF2 and EIF4E2 to collided ribosomes to initiate a negative-feedback loop that prevents new ribosomes from translating defective mRNAs. Further, EDF1 regulates an immediate-early transcriptional response to ribosomal collisions. Our results uncover mechanisms through which EDF1 coordinates multiple responses of the ribosome-mediated quality control pathway and provide novel insights into the intersection of ribosome-mediated quality control with global transcriptional regulation.

    1. Cell Biology
    2. Microbiology and Infectious Disease
    Mark S Ladinsky et al.
    Research Article Updated

    Fusion of HIV-1 with the membrane of its target cell, an obligate first step in virus infectivity, is mediated by binding of the viral envelope (Env) spike protein to its receptors, CD4 and CCR5/CXCR4, on the cell surface. The process of viral fusion appears to be fast compared with viral egress and has not been visualized by EM. To capture fusion events, the process must be curtailed by trapping Env-receptor binding at an intermediate stage. We have used fusion inhibitors to trap HIV-1 virions attached to target cells by Envs in an extended pre-hairpin intermediate state. Electron tomography revealed HIV-1 virions bound to TZM-bl cells by 2–4 narrow spokes, with slightly more spokes present when evaluated with mutant virions that lacked the Env cytoplasmic tail. These results represent the first direct visualization of the hypothesized pre-hairpin intermediate of HIV-1 Env and improve our understanding of Env-mediated HIV-1 fusion and infection of host cells.